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1. INTRODUCTION

Among the many ways in which explicit time dependence appears in
the quantum mechanics of molecules is via double time propagators (1), notably
the electron propagator and the polarization propagator. Some of the historical
development regarding those quantities motivates and informs the present work,
hence a summary is appropriate. Diverse decoupling schemes have been devised
and used to generate approximations to both of those propagators (for example
2, 3).  A major problem in the first order approximation for the polarization
propagator, [equivalent to the Random Phase Approximation (RPA) - also
known as the linearized Time-Dependent Hartree Fock (TDHF) approximation],
is the inconsistency of the ground state involved in the definition of that
propagator.  The adjoints of the perturbationaly corrected excitation operators
produced by RPA do not kill this ground state, as they should if the theory were
consistent.  Some time ago it was shown (4) that the nearest one can get to a
consistent ground state is via states of the Antisymmetrized Geminal Power
form.  Subsequently the resulting generalized RPA theory was used to calculate
the excitation spectra of small molecules (5).

The solution to the consistent ground state problem turns out to be
closely related to the theory of coherent states and the theory of group
representations. Taken together, the two topics involve the construction of
group-related generalized phase spaces. Within this context, Öhrn and co-
workers (6) have exploited the Time-Dependent Variational Principle (TDVP)
as a means of obtaining approximate solutions to the Time-Dependent
Schrödinger Equation (TDSE) for systems of electrons and nuclei (7). By
application of this principle to coherent states of both electrons and nuclei, the
Born-Oppenheimer approximation is avoided, hence the time evolution of
electrons and nuclei can be treated eff iciently without first finding electronic
potential energy surfaces, then studying the coupled motion of nuclei on these
surfaces. Typicall y, the variables used are nuclear coordinates and momenta and
complex parameters labeling the electronic state.  The approximate solutions to
the TDSE are characterized by the evolution paths of these variables as
determined by generali zed classical equations of motion obtained from the
TDVP.

Here we summarize our recent work to extend and apply these ideas to
the powerful practical and conceptual tools of Density Functional Theory (8).
Specifically, the formalism used in the TDVP is extended to include mixed
states, with the states labeled by the densities as functions of electronic space
and spin coordinates. (In the treatment presented here we do not explicitl y
consider the nuclei but consider them to be fixed. Elsewhere we shall show that
it is indeed straightforward to extend our treatment in the same way as Öhrn et
al. and obtain equations that avoid the Born-Oppenheimer approximation.)  In



this article we obtain a formulation of exact equations for the evolution of
electronic space-spin densities, which are equivalent to the Heisenberg equation
of motion for the electrons in the system. Using the observation that densities
can be expressed as quadratic expansions of functions, we also obtain exact
equations for these one-particle functions.   Not all the proofs and detailed
analyses are given here, but enough is presented to delineate the entire formal
structure.

A brief summary of motivation from the DFT perspective also may be
helpful. On the whole, contemporary versions of Density Functional Theory are
presented in two separate conceptual and logical frameworks, one each for time-
independent and time-dependent DFT.  Even within the constrained search
formulation of time-independent DFT, there are several rather deep and
interconnected questions.  Commonly these are discussed in terms of symmetry
(and symmetry breaking), occupation number distributions, and functional
differentiabilit y.  Their resolution is important for both fundamental reasons and
to provide pathways to more powerful and reliable DFT approximations.
Implicit in them is the issue of mixed states.  Because customary formulations of
time-dependent DFT are separate, it is not evident how resolution of those issues
in the time-independent case would carry over.  Further, the importance of
parameter-space metrics in the work of Öhrn et al. versus the absence of such
metrics in conventional time-dependent DFT suggests strongly that a
formulation directly from the TDVP would be beneficial and clarifying.  Among
other things, such a formulation would provide a rigorous basis for the use of
dynamics in parameter space, including mixed states right from the start, as well
as  a significantly enhanced foundation for constructing approximations.

2. MIXED STATE TIME-DEPENDENT VARIATIONAL
PRINCIPLE

Conventional presentations of DFT start with pure states but sooner or
later encounter mixed states and densities (ensemble densities is the usual
formulation in the DFT literature) as well .  These arise, for example in
formation or breaking of chemical bonds and in treatments of so-called “static
correlation” (situations in which several different one-electron configurations
are nearly degenerate).   Much of the DFT literature treats these problems by
extension and generalization from pure state, closed shell system results.  A
more inclusively systematic treatment is preferable.  Therefore, the first task is
to obtain the Time-Dependent Variational Principle (TDVP) in a form which
includes mixed states.

In a landmark publication in 1981, Kramer and Saraceno (7) [hereafter
“K&S” to distinguish from Kohn-Sham, usually denoted as “KS” in the DFT
literature, a usage we follow] showed how to use the Time-Dependent
Variational Principle to construct generalized classical equations of motion for



quantum mechanical state vectors in terms of labels that characterize those
vectors parametrically. (Obviously, “classical” in this setting refers to the form
of the equations, not the content.) This construction leads to equations that
determine evolution paths in a parameter space. In the case of a parameterization
that covers all of state space those equations are entirely equivalent to the exact
Time-Dependent Equation Schrödinger Equation (TDSE) and to approximate
TDSE's for parameterizations that label a subset of states in a continuous
fashion. In their work they showed that in certain cases the parameters could be
related to group coset spaces (9) and give rise to families of Coherent States
(CS) (10-13), where the set of coherent states is generated by the action of a
coset on a reference state. A familiar example is the set of single determinantal
states, in which all the states are generated by the action of a coset of the group
of one-particle unitary transformations acting on a given single determinantal
reference state, leading to the Thouless parameterization of these states (14). In
the case of group-generated CS's, the labels are complex variables that
holomorphicall y (complex analyticall y) parameterize a set of N-particle states
and the generali zed dynamics takes place in the manifold of these states (which
in general is nonlinear). In general not all N-particle states are produced by the
action of the chosen group on the reference state.  The resulting equations of
motion correspond to the restriction of the TDSE to this submanifold. This
formulation of approximate TDSE's has been examined at great length in many
contexts (6,15-18).

The most general formulation is in terms of real parameters, as any
complex parameterization can always expanded into real and imaginary parts,
while the converse construction (complex parameters from combination of real
ones) is not always possible.  The real parameterization does not take one
directly into the group and coherent state formalism. However in the context of
DFT the real parameterization is particularly natural, since the pervasive
perspective is that N-particle states are labeled by densities which are real-
valued functions of space and spin variables.

The K&S treatment is in terms of pure N-particle states i.e. vectors in
an N-particle Hilbert space. As noted, to encompass DFT in its most general
form one must consider mixed N-particle states i.e. states described by N-
particle Density Operators. Thus this section extends the K&S treatment to
include mixed states by using the vector space structure of N-particle operator
space and applying the K&S treatment to state "super vectors" in this operator
vector space [I f one can define a linear structure on a space of operators, then
those operators can be viewed as supervectors and any map that maps a linear
operator space into itself can be viewed as a superoperator. The terms
supervector and superoperator were first introduced by Zwanzig (19)] Although
most of the formal manipulations and expressions are identical in appearance
(with those of K&S), the interpretation in terms of operators is quite different.



Note to the reader: the notation can be somewhat intricate, thus it is
summarized in Appendix A.

2.1 States and Superoperators

The mixed and pure states of an N-particle fermion system can be
described by positi ve and normalized operators, 

�
N , which form a convex set

contained in the space of Trace Class (Appendix B) operators � �1
N

� �
acting in

the N-particle fermion Hilbert space � N .�
N = ≥ = ∈  D D Tr D DN N N N N; ; ;0 1 1

� � 	 
� � �
(2.1)

where � N  is defined to be the N-fold antisymmetrized tensor product of the

one-particle Hilbert space � 1 .

Positi ve elements, X, of the vector space of operators � �1
N

� �
can

always be expressed as a product of a Hilbert-Schmidt operator (Appendix B)
with its adjoint as X=QQ†. [The Harriman (20) decomposition of the density
into positi ve sums of products of orbitals is in fact a very special case of this
relationship, which wil l be important later.] One needs to keep in mind that this
factorization is not unique however: QU for any unitary U produces the same X.
Moreover UQ produces the same X for U belonging to the invariance group of X

(Appendix C).  The space of Hilbert-Schmidt operators, � �2
N

� �
, is a Hilbert

space that has an inner product defined in terms of the trace operation

X Y Tr X Y|
� � � �

= † (2.2)

This fact allows us to express the set � N  as the unit sphere in � �2
N

�  
as� N = = ∈  Q Q Q Q N; | ;

! " # $% &
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' (
(2.3)

The action of the Hamiltonian, H, can be expressed as a superoperator mapping

the Hilbert space ) (
2

N
* +

into itself by,
: ;H Q HQ Q N→ ∈ - .2 / 0 (2.4)

The superoperator 1H inherits the unboundness of H and its domain is defined as

Dom H Q HQ N
2

,
3 4 5 46 7

= ∈ 8 92 (2.5)

In the following we consider Hamiltonians, H t
: ;

, that are explicitly time

dependent. The definitions Eq. (2.4)-(2.5) also hold without modification in
these cases.



2.2 State Evolution Equations

Now consider operators Q that depend on real parameters x, which can
be considered as coordinates of points of a linear or nonlinear manifold <  of

operators Q contained in = >2
N

? @
,  [including A B2

N
C @

itself], i.e. the real

coordinates x denote a point Q ∈ D . Following K&S generalized classical

equations of motion for evolution paths x t
E F

can be obtained for these operators,

which are given by

x x
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The Poisson brackets are defined for functions f: Y →  C by

f,g
f g

,

Z [
= ∂

∂
∂
∂∑ x xi

ij
ji j

ξ (2.7)

where the antisymmetric matrix that defines a "phase space" structure for the
manifold was shown by K&S to be given by
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(2.8)

Note that for general parameterizations this metric matrix is neither skew
diagonal nor constant; see below. The equations of motion expressed in Eq.
(2.6) are obtained by using the Principle of Stationary Action, δ o = 0, with
Lagrangian

      p Q t Q t t

tQ t i
t

H Q t

Q t Q t
x x

x x

x x
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, , Re
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†
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and Action � �
= �� ���

Q t Q t t dt
t

t

i

f

x x
� �� � � �  �

, ,
†

(2.10)

where the end points x t x ti f

¡ ¢ £ ¤¥ ¦
, of the paths are held fixed. The

"superoperator", i
t

§
∂
∂

, that produces i times the time rate of change of operators

and is defined in a way analogous with
§

H t
¨ ©

in Eq. (2.4), is not self-adjoint on



the space ª «2
N

¬ 
. Therefore the process of taking the real part of the inner

product in Eq. (2.9) is significant.

The metric term Eq. (2.8) is important for all cases in which the
manifold ® has non-zero curvature and is thus nonlinear, e.g. in the cases of
Time-Dependent Hartree-Fock (TDHF) and Time-Dependent Multi
Configurational Self-Consistent Field (TDMCSCF) calculations. In such
situations the metric tensor ξ varies from point to point and has a nontrivial
effect on the time evolution. It plays the role of a time-dependent force
(somewhat like the location-dependent gravitational force which arises in
general relativity from the curvature of space-time). In the case of flat i.e. linear
manifolds, as are found in Time-Dependent Configuration Interaction (TDCI)
calculations, the metric is constant and does not have a significant effect on the
dynamics.

If the inverse in Eq. (2.8) does not exist then the metric is singular, in
which case the parameterization of the manifold of states is redundant. That is,
the parameters are not independent, or splitting of the manifold occurs, as in
potential curve crossing in quantum molecular dynamics. In both cases, the
causes of the singularity must be studied and revisions made to the coordinate
charts on the manifold (i.e. the way the operators are parameterized) in order to
proceed with calculations.

The form of the action principle given above was first applied to
quantum mechanics to describe the time evolution of pure states (i.e.
wavefunctions) by Frenkel (21) and leads in the case that the manifold ®  is all
of ¯ N to the TDSE. We have extended it to more general operator manifolds° ± ²

⊆ 2
N

³ ´
 in the manner outlined above, and for the case µ ± ²

= 2
N

³ ´
,

have shown (22) that the equations of motion (2.6) are equivalent to the

Heisenberg Equations of Motion (HEM) for the N-particle state operators D N .

iD H D D QQ Tr DN N N N
¶

, ; ;= = =    † · ¸ 1 (2.11)

In this particular case the x x x≡ 1 2,
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 parameters label the Q operators by
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N
;1≤ ≤ ÈÉÊ ËÌ ÍÎÏ Ð Ñ ÒÓ  is a complete orthonormal basis for Ô N and r is the

dimension of one-particle space, which in the exact case is infinite.

The equations of motion (2.6) can be expressed compactly in matrix
form as

d

dt

x
x

= ∂
∂

−ηη 1 Õ (2.14)

and solved by standard integration techniques (23).

The preceding evolution equations also can be used to generate
equations for stationary states by setting the time derivative to zero giving the
two equivalent forms (signified by the double arrow):

x ii , ;
Ö× Ø

= ⇔ ∂
∂

=−0 1 for all ηη Ù
x

0 (2.15)

3. TIME INDEPENDENT DENSITY FUNCTIONAL
THEORY

In order to apply the preceding development to states parameterized by
densities we must first analyze the structure and properties of this type of
parameterization.

3.1 Definition of the energy functional of the density

The relationship between N-particle states, in which we include mixed
states, represented by N-particle operators as defined in Eq. (2.1), and the space-
spin density ρ y

Ú Û
is not 1-1. Here and throughout the following development, y

is the combined space-spin variable r,σ
Ü Û

. These facts are the essence of the

power and simplicity of the density functional method and at the same time the
source of its conceptual complexity and intricacy. The power and simplicity
come from being able to characterize an N-particle system by a real positi ve
semi-definite function of a single 3D spatial variable and one 2D complex spin
variable, while the conceptual complexity and intricacy come from developing
an explicit understanding of how such a density determines a N-particle state.

To develop a framework in which to treat these topics in a rigorous
manner for both time-dependent and independent systems, we adapt the
constrained search of Levy (24) to generate a well -defined energy functional of
the density, then follow a constrained optimization analysis of the problem as
described, for example, in the book by Hestenes (25). These techniques allow



one to specify the way paths of N-particle density operators can be defined in N-
particle operator space such that they are labeled by densities in 1-1 fashion. The
expectation of the Hamiltonian with respect to N-particle states on these paths
then becomes a well -defined functional of the density ρ(y) and the ground state
energy is the minimum value of this functional. The treatment is somewhat akin
to that of Kryachko and Ludeña’s “orbits” (26) but differs (in an essential
fashion) in determining the paths by optimization criteria which assure that the
resulting functionals have well -defined functional derivatives irrespective of the
topology of the density. Kryachko and Ludeña, in contrast, identify orbits by
employing the Bader density surface criterion (27), which means that those
orbits are connected inescapably with the molecular point group symmetry.
Even at the time-independent level, molecular structure and bonding often
involve changes in the point group symmetry, so that inescapable connection
seems to intertwine two issues better left apart. Dynamics simply makes such
conceptual and procedural issues harder.

First we define the linear map that produces the densities from N-
particle states. It is a map from the space of N-particle Trace Class operators
into the space of complex valued absolute integrable functions of space-spin
variables

ΞN
N L L1

1 1
3 2

1: Ý Þß à á à â ã
→ × ≡R C Y (3.1)

defined by

ζ y y y y Y
â ã â ã â ã â ã â ãä å æ ç

= = ∈Ξ Φ ΦN X Tr X L1
1

† . (3.2)

The field operators used in the definition above are given by

Φ y y
æ ç æ ç

=
≤ ≤
∑ϕ i

i r

i

1

a  (3.3)

in terms of the discrete field operators, a a†
i i,

è å
, which are defined using a basis

of one-particle functions of space and spin ϕ i i r;1≤ ≤
é ê

and their action on the

vacuum vector φ

a†
i iφ ϕ=  (3.4)

The field operators satisfy the fermion anti-commutation relationships
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The kernel of ΞN
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N
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, which we use to define an

equivalence relationship on í î1
N

ï ð
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where the doubled arrow indicates equivalent statements. We denote these
equivalence classes by ζ

N
 and note that they form a linear space, in quotient

notation, õ ö1
1

N

NKer

÷ ø
Ξ

. The map ΞN
1 , when restricted to the convex set of

N-particle states, ù N , has values in the convex set, ú 1N , of positi ve functions

in L1 Y
û ü

that integrate to the value Nú 1 0N d N= ≥ =
ý

ρ ρ ρ; ,y y y
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(3.7)

Harriman (20) has shown that this map is "onto" i.e. any element of � 1N  comes

from at least one element of � N . Note that this property does not rule out the

possibili ty that an element of � 1N  can also come from operators not in � N . This
"onto" property should be compared to the case that arises in the N-
representabil ity problem (28) where not every positi ve two-particle operator
comes from a state in � N so the contraction map in that case does not have the
“onto” property.

The energy functional defined by the Hamiltonian, H,    
E

E D Tr HD

H N

H
N N

: � →

=

R� � � 	 (3.8)

is, however, not uniquely defined on the equivalence classes ρ
N

, i.e. it is not

defined on the space 
 �1
1

N

NKer

� 
Ξ

as many different D N 's give the same ρ

while producing different values E DH
N

� 
. ThusEH is not well -defined as it is

multivalued on individual equivalence classes. In order to obtain an energy
functional that is well -defined, we continue with the constrained search logic
and define another functional in terms of the space-spin density as

F Min E D E DH
D

H
N

H
N

N
N

ρ ρ
ρ

� � � � � �� �� �= =
∈� * (3.9)

where � �N N Nρ ρ
� �

= ∩  is the set of N-particle states that produce the same

density and DN
* ρ

� �
 is the minimizer in the set � N ρ

� �
. Note that we exclude the

case of a non-unique minimizer; see Savin (29) for a related discussion. The
minimization of Eq. (3.9) contains three types of constraints, normalization,
positi vity and fixed density. The normalization and positi vity constraints can be



handled by the factorization D
QQ

Tr QQ

N =
†

†
� � , which leads to the energy

functional definition
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One can show (30) that densities are square integrable and thus belong to the
Hilbert space L2 Y

1 2
of square integrable functions. This allows one to define

the set, ρ
N

, of feasible Q's by a quadratic constraint function for a fixed ρ as

g:

g  = 0

g =  †
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(3.11)

The variation in Eq. (3.10) can be carried out by using a Lagrangian function<
Q E Q g dH, ,λ ρ λ

= > = > = > = >
= − ? y y y

Y

(3.12)

whose stationary points determine the constrained minima of E QH @ A . By

considering the sensiti vity of the minimizer,Q* ρ
B A , to variations in ρ and

checking that certain conditions on the first and second derivatives ofC
Q, ,λ ρ

B A are satisfied Hestenes (25) showed that one can define a path of

solutions, Q* ρ
B A , parameterized by ρ. On this path one can define an energy

functional

F E QH Hρ ρ
D E D EF G

= * (3.13)

and a Lagrange parameter functional,λ ρ
H I

, which can be identified with the

functional derivative δ
δρ
FH of FH ρ

J K
along that path. Note that the energy is a 1-1

functional of the density on this path and simultaneously that the functional
derivative is defined on this particular path. It is possible define other paths inL M

2
N

N O
on which the energy is also a 1-1 functional, but on those paths the

following crucial fact wil l not be true
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where E0 is the ground state energy of the system. The paths Q* ρ
Y Z

 clearly

define paths in [ \1
N

] ^
by D Q QN

* * *ρ ρ ρ
_ ` a ` a `

= †
.  The preceding construction

of the energy functional is discussed in more detail in (30).

The explicit form of the functional FH  is of course unknown and in
practical applications has to be approximated. In order to facil itate the creation
of these approximations one decomposes FH  into a sum of other functionals that
focuses all the unknowns into one component, the exchange-correlation
functional, FXC.

  F F F F F FH C XC eN Ext Tρ ρ ρ ρ ρ ρ
b c b c b c b c b c b c

= + + + + (3.15)

(with subscripts C, XC, eN, Ext, and T denoting Coulomb, exchange-correlation,
electron-nuclear attraction, external, and kinetic energies respectively). It is
crucial to remark that (3.15) is not the Kohn-Sham decomposition familiar in
conventional presentations of DFT. There is no reference, model, nor auxiliary
system involved in (3.15). From the construction presented above it is clear that
in order to maintain consistency and to define functional derivatives properly all

these functionals need to be defined on the same path in d e2
N

f g
.  These two

observations lead to what may be unfamiliar definitions for the kinetic energy
functional and the exchange-correlation functional, as follows:
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Note in particular that the exchange-correlation functional that emerges here
does not involve the kinetic energy. From the perspective of the DFT literature,



(3.16) is a formulation of the Hohenberg-Kohn functional that is constructed to
ensure that the functional derivatives required for variational minimization
actuall y exist. We return to these issues in Sect. 3.3. Also note that in the time
dependent case the external potential V ir

� �
is often considered to be explicitl y

time dependent and further, that if nuclear motions also are taken into account
the eN  term is also time dependent.

3.2 Factoring the Energy Functional through the First Order Reduced
Density Operator.

An appealing way to apply the constraint expressed in Eq. (3.14) is to
make connection with Natural Orbitals (31), in particular, to express ρ as a
functional of the occupation numbers, n, and Natural General Spin Orbitals
(NGSO's), ψ i

� �
, of the First Order Reduced Density Operator (FORDO)

associated with the N-particle state appearing in the energy expression Eq. (3.8).
In order to introduce the variables n and ψ i

� �
in a well -defined manner, the

constrained search process Eq. (3.9) needs to be factored into two stages. The
first search is over all N-particle states that produce the same FORDO and hence
produces an energy functional of the FORDO.  The second search is over all
FORDO's that correspond to a fixed density, thus producing an energy
functional of the density. This sequential process constructs paths in N-particle
state space that are labeled by FORDO's and paths in the set of FORDO's that
are labeled by densities. On these paths there is 1-1 correspondence among N-
particle states, FORDO's and densities.

FORDO's are determined by their occupation numbers and their
NGSO's, a relationship that is only unique up to unitary transformations that mix
NGSO's with the same occupation numbers. However one can parameterize this
association to make it unique. Hence on the paths determined by the constrained
energy functional, one has a 1-1 correspondence between ni i,ψ

� �
 and densities,

and densities thus can be viewed as a functional of ni i,ψ
� �

. This construction

leads to variational equations for the ground state energy in terms of occupation
numbers and NGSO's.

The FORDO is defined by a linear contraction map,CN
1 , given by the

following
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The energy functional,O DH
1

� �
, of the FORDO is defined by

O D Min E D E D DH
D D

H
N

H
N

N
N

1 1

1

  ¡   ¡   ¡  ¡¢ £= =
∈¤ # (3.18)

in terms of the energy EH  on the path D DN
#

1
¥ ¦

, where § §N
N

ND D1 1
¨ ©

= ∩

is the set of N-particle states that contract to the same FORDO D1 . (Note that
non-positi ve operators also contract to D1 thus the content of [D1]N  is not limited

to states.) The equivalence classes X XN
;  ∈ ª «1

1
¬ 

are defined in an

analogous manner to ρ
N

, by replacingΞN
1 byCN

1 , L1 Y
® ¯

by ° ±1
1

² ³
in Eqs.

(3.1), (3.2), (3.6) and considering off-diagonal values in Eq. (3.2).  The energy
functional FH  from Eq. (3.9) then can be expressed as
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in terms of OH  defined on the path D#
1 ρ

¾ ¿
. Here À ÀN N1 1 1ρ ρ

Á Â
= ∩  is the set

of FORDO's that produce the same density, À N1 is the set of N-Representable,

FORDO's and ρ
1
the set of one-particle Trace Class operators that map to the

density ρ .  The equivalence classes ρ
1
 in one-particle Trace Class operator

space Ã Ä1
1

Å Æ
are defined analogously to ρ

N
, which are in N-particle operator

space. The path DN
* ρ

Ç È
 can then be expressed as the composition
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A FORDO D1  always can be expressed in natural form as
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where we have introduced the occupation-number-normalized NGSO's ν i

Ï Ð
. On

the path D# ρ
Ñ Ò

 there is a 1-1 correspondence
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As this relationship is 1-1, the density ρ can be expressed as a function of νν , i.e.

ρ ρ= νν
Ù Ú

, and both ρ and νν can be treated as equivalent, but different, variables

for the argument of the energy functional FH .  The minimization of Eq. (3.14)
that determines the ground state energy then becomes

E Min FH0 =
∈νν
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(3.23)

The feasible region à  is defined by the constraints
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and the constrained minimum of Eq. (3.23) can be obtained from the Lagrangian
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one has, via the chain rule,
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It is useful to note that Eq. (3.27) defines the action of a local operator
δ
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From Eq. (3.25) and the change of variables in Eq. (3.27), we obtain Euler

equations 
δ
δν

δ
δν

ó ó
F
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= = 0, which can be expressed as the generalized

eigenvalue problem

δ
δρ

µ ν λ νFH
i ij j

j

−
ôõö ÷ø ù

=
≤ ≤
∑

1 r

(3.29)



and its complex conjugate. The component potential functionals can be obtained
by taking the functional derivatives of Eq. (3.16) leading to exact, but in some

cases, unknown expressions for 
δ
δρ

δ
δρ

δ
δρ

δ
δρ

δ
δρ

F F F F FC T XC eN ext, , ,  and . These

derivatives are all evaluated on the same path D D DN N
* # #ρ ρ

ú û ü ý þ ÿ
= � 1 , which

again, leads to the definitions of 
δ
δρ

δ
δρ

F FT XCand  as local potentials in the one-

particle Eq. (3.29) for the density.

3.3 Relation with the Conventional Kohn-Sham Procedure.
The reader should note that no restrictions were placed on the form of

the density expansion Eq. (3.26); in particular there is no limit on the number of
terms. As already noted, therefore Eqs. (3.29) are not conventional Kohn-Sham
equations.  Rather they are an exact one-particle form of the Hohenberg-Kohn
variation procedure and use Hohenberg-Kohn potentials in the definition of the

effective one-particle Hamiltonian 
δ
δρ

µFH −
��� �� �

. They have some kinship with

the generalized Kohn-Sham equations treated, for example, by Levy and Perdew
(32) but there is still a key difference. Unlike Kohn-Sham procedures, in (3.16)
no auxiliary state has been introduced to provide a partitioning and regrouping
of the terms.

At least for the case of a non-degenerate ground state of a closed shell
system, it is possible to delineate the standard Kohn-Sham procedure quite
sharply. (The caveat is directed toward issues of degeneracy at the Fermi level,
fractional occupation, continuous non-integer electron number, and the li ke. In
many but of course not all works, these aspects of the theory seem to be
intertwined in an unanalyzed way with incompatible assumptions about single
determinantal KS states.) For that specific case, the standard KS auxiliary state
is a single determinant of singly occupied orbitals, which is an Independent
Particle State (IPS), (any conventionally doubly occupied orbitals simply occur
twice).  The form is appealing because it incorporates Pauli exclusion explicitly,
and is expli citly N-representable while being easy to manipulate.

With these motivational remarks, we now recover standard KS theory
(in the particular instance just defined) from Eq. (3.16) for this specific case but
with an important new constraint. Let � N IP1 ρ

� 	
 be the set of all Independent

Particle FORDO's corresponding to ρ with precisely N non-zero terms:
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By Harriman’s theorem already cited there is always at least one such FORDO
for each legitimate ρ.  We now define the KS kinetic energy functional, which
for a fixed number of particles is system independent, as

  T Min Tr TD E DKS
D

IP T IP
N

IP N IP

ρ ρ
ρ
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◊1
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where ET  is defined in Eq. (3.16) and DIP
N

◊ ρ
� �

is the unique Independent Particle

N-particle state that corresponds to the minimizer DIP◊
1 ρ

� �
of this constrained

optimization, which if the conditions described in (25) are satisfied determines

pathsDIP◊
1 ρ

� �
and DIP

N
◊ ρ

� �
in � �1

1
� �

and � �1
N

� �
respectively. It should be

noted that the pathsDIP◊
1 ρ

�  
and DIP

N
◊ ρ

�  
are in general very different from the

pathsD D# *,1 1ρ ρ
! " # "

and DN
* ρ

$ %
. The definitions in Eqs. (3.16) can then be

transformed to standard KS form by regrouping and defining difference
functionals between exact and independent particle paths in the following
manner: (note that the HK kinetic energy and XC terms involve a system

dependent path DN
* ρ

& '
in N-particle state space i.e. F E DT T

Nρ ρ
( ) * )+ ,

= * and

F E DXC XC
Nρ ρ

- . - ./ ,
= * )
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then

F T FT KS Tρ ρ ρ
0 1 0 1 0 1

= + ~
(3.33)

The KS XC potential term can then be defined by

F F FXC KS T XC,
~ρ ρ ρ

0 1 0 1 0 1
= + (3.34)

leading to the identification
F F T FT XC S XC KSρ ρ ρ ρ

- . - . - . - .
+ = + , (3.35)

By construction, KS functionals are well -defined, (but note that the XC
KS term is defined with the help of two distinct paths) and give well -defined
functional derivatives, so their variation proceeds as in the preceding section,
leading superficially to the standard KS equations.

There is, however, an important distinction that seems to have been
missed in most if not all of the DFT literature (29), (33). In essentiall y all
presentations of the standard KS procedure, the functions corresponding to



ϕ i

2 3
are restricted to the reals, usually implicitly. In fact this restriction cannot

be true in general without either a violation of the constraints to the proper path
or, alternatively, forcing the extremum of the constrained functional to lie above
the actual energy minimum. (To illustrate the point, Harriman’s construction of
single-determinants associated explicitly with a specified density relied upon
complex orbitals.) The proof is simple. Harriman’s theorem provides at least one
determinant for each feasible density but with the orbitals restricted only to
L2 Y

4 5
. Fukutome (34) has shown, however, that all possible single

determinants with orbitals from L2 Y
4 5

separate into eight distinct classes

according to spin and time reversal symmetries. Therefore all possible densities
can be so classified (the densities associated with each class have a unique
topology). Since some of the classes have orbital forms which are manifestly
complex, it follows that to include all feasible densities in the paths and at the
same time search them with a single KS determinant, the determinant must in
general have complex orbitals.

There are two immediate consequences of this result. First, is a
previously unappreciated ambiguity in the so-called adiabatic connection
formulation of FXC KS, ρ . In that treatment, the functional is found from a Pauli

coupling constant integral which usually is said to connect from “the non-
interacting ground state”, i.e. the KS determinant, to the full y interacting ground
state.  If however, the KS determinant is restricted to real orbitals, then in
general that coupling constant integral wil l not be connecting to the ground state
of the non-interacting system but only an upper bound to its ground state.
Secondly, in general, the exact KS potential will not be a pure real function,
contrary to the unstated assumption in essentiall y all of the literature.
Alternatively, if one insists on real orbitals, then the single KS determinant must
be given up and replaced by a suitably chosen and characterized multi-
determinantal auxiliary function. Taken together, these previously unnoticed
aspects of KS theory also provide a significant opportunity for improvement in
practical approximations, a topic that we address in Section 5.

In the preceding discussion we have expanded the density in terms of

N M r≤ ≤ functions that belong to the one-particle Hilbert space 6 1such that
their norms are less than or equal to one and the trace of the density is equal to
N.  All these expansions could in principle be exact; there is no need for
M r= = ∞ , as is clearly demonstrated in the KS procedure, where M N= . If
M < ∞ and r = ∞ , then new forms of auxiliary states, i.e. different from single

determinantal ones, are implicitly introduced.

Another class of expansions is also possible, but in these the functions
cannot be interpreted as belonging to the Hilbert space of one-particle states,



even though they are functions of one space and one spin variable and do belong
to a Hilbert space. In such expansions the norms of the functions are less than or
equal to N and 1≤ ≤ ∞M . In the extreme case of M = 1one can even express

the density as ρ ωω= , where ω ρ=
1
2 .  This factorization leads to the Pauli

potential (35); we shall discuss it in detail elsewhere (30). For each value of M,
whiler = ∞ one could choose a different partitioning of the XC and kinetic
energy in a similar fashion to Eq. (3.35).  Such choices would be closely related
to the generalized KS schemes already mentioned.

4. TIME-DEPENDENT DFT.

4.1 Characterization of the Lagrangian as a function of the density

The definition of the Lagrangian in Eq. (2.9) in terms of the paths x(t)
needs to be modified when time dependent densitiesρ t

7 8
are considered as the

variables x(t) in Eq. (2.9), as 9 is not a well -defined functional of ρ t
: ;

. It is

necessary to proceed somewhat parallel with the determination of paths in the
preceding section in order to surmount this diff iculty. In the context of K&S
therefore, the Lagrangian which results wil l have no new content; rather, the
analysis is restructured to make the functional dependence on the density precise
and well -defined.  First define an intermediate Lagrangian

   < <1 Q t Q t t t Q t Q t t t g t d
= > ? > ? > ? >@ A B C B CD A B C B C

, , , , , , ,† †ρ λ λ= − E y y y
Y
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where F Q t Q t t
G H G HI J

, ,† is the Lagrangian defined in Eq. (2.9), λ t
K L

 a time

dependent Lagrange multiplier function and the constraint function g t
K L

 is

defined for a fixed time-dependent ρ  as

g t Q t Q t tN, ,y y y
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= − =Ξ1 0† ρ  (4.2)

The equalit y in the preceding constraint is in the sense of the L1 Y
K L

norm for

fixed t. The actual Lagrangian controll ing the dynamics then is defined asF F
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where the paths Q t N
* ρ e fg h i j

∈ k l2 are defined by the constrained

minimization in the same manner as in the time-independent case. This
Lagrangian is of the same form as in (7) modified only by constrained search
considerations in order to get a well -defined functional of the time-dependent
density.



4.2 Exact Equations of Motion in terms of the Density

With the Lagrangian in hand, the principle of stationary action
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t

t
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leads to the equation of motion
ρ ρ, tuv w
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where the equivalent classical Hamiltonian is given byx y z
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and the inner products in Eq. (4.6) are as defined in Eq. (2.2).  The Poisson
brackets are defined in a fashion similar to Eq. (2.7)
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but now with a metric integral kernel, which depends on ρ t L
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The time-dependent Eq. (4.5) in terms of the density is exact and equivalent to
the full  Heisenberg equation of motion when no approximations or models are
invoked. It is thus worthwhile to display it in more detail
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The first term in this integral is a delta function and produces pointwise
equations
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4.3 Exact Equations of Motion in terms of one-particle Functions

The time-dependent density can be expressed as a sum of products of
unnormalized, time-dependent NGSO's analogously with Eq. (3.26)

    ρ ν νt t ti i
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and one can set up a 1-1 correspondence between ρ t
µ ¶

 and

νν t t i ri
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≡ ≤ ≤ν ;1 . This correspondence allows us to express the



Lagrangian as a functional ¼ νν νν,
½ ¾

. Note however that unlike functionals used

in the Time-Dependent Hartree Fock approximation (6), this Lagrangian is not
complex analytic in the variables νν νν,

½ ¾
separately.

The equation of motion Eq. (4.5) and Eq. (4.9) can be expressed in

terms of the variables νν t t i ri
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In more detail these relations are

d t

dt
t

t

d t

dt
t

t

i
ij

jj r

i
ij

jj r

ν
ξ

δ
δν

ν
ξ

δ
δν

È É Ê ÉË Ì Í ÎÏ Ì
Í Î Í ÎÏ Ì Í ÎÏ Ì=

=

≤ ≤

≤ ≤

∑

∑

νν
νν

νν
νν

Ð
Ð1

1

(4.13)

where
(4.14)

and ξ ηij
ij

= −1
Ñ Ò

. Using Eq. (4.11) the components ∇ν i Ó  of the gradient of the

equivalent classical energy can be expanded as
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and
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Using Eqs (4.11), (4.13), (4.15) and (4.16) one then can obtain time-dependent
equations for the unnormalized NGSO's νν
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Note that the time-dependent version of the constraints of Eq. (3.24)
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need to be maintained, which necessitates the use of time-dependent Lagrange
parameters in a modified evolution equation based on Eq. (4.17).



Again we point out the rather remarkable fact that the coupled Eqs. (4.17) are
exact and are equivalent to the full HEM if no other constraints, other than those
of Eq. (4.18), are placed on νν , � nor � . These coupled equations describe

evolution paths in � 1
2≡ L Y

� �
 and the local potentials 

δ
δρ

�
 and 

δ
δρ

�
 act as

time dependent operators mapping � �1 1→ . The curvature tensor ξ ij νν
� �

 can

be obtained either from the expression in Eq. (4.14) or from Eq. (4.8) by using
the coordinate transformation Eq. (4.11) that introduces matrix elements of the
operator defined by the kernel
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between NGSO's ν i t i r
� �� �

;1≤ ≤ .

The local potential 
δ
δρ

�
 can be expanded in terms of the component

potentials Eq. (3.16), now considered as time dependent, leading to a time
dependent exchange-correlation potential
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where the pathQ t* ρ 8 9: ;
 is defined by Eq. (4.3).

4.4 Other Forms of Time-Dependent Density Functional Theory

Time-Dependent Density Functional theory (TDDFT) has been
considered with increasing interest since the late 1970's and many papers have
been published on the subject.  The treatments presented by Runge and Gross
(36) and Gross and Kohn (37) are widely cited in the discussion of the evolution
of pure states.  The evolution of mixed states has been considered by Rajagopal
et al (38), but that treatment differs in many aspects from the form given here.

In essentially all of the prior formulations of TDDFT a complex
Lagrangian is used, which would amount to using the full expectation value in
Eq. (2.9), not just the real part as in our presentation. The form we use is natural
for conservative systems and, if not invoked explicitl y at the outset, emerges in
some fashion when considering such systems. A discussion of the different
forms of Frenkel’s variational principle, although not in the context of DFT, can
be found in (39).

Another place where we diverge from other developments of TDDFT is
in the use of the metric term Eq. (2.9). These terms arise in a non-trivial manner



as the pathsQ* ρ
< =

are manifestly nonlinear functionals of ρ and thus have

significant affects on the evolution of the density. Regarding the Time-
Dependent KS form of the theory as used by e.g. Theilhaber (40), it has been
suggested (6) that the metric terms should cancel as in TDHF. However we do
not concur with this suggestion as the overlap functional that appears in the
Lagrangian that produces the one-particle equations depends on the paths

D QN
* *,ρ ρ

> ? > ?
in @ A1

N
B C

and D E2
N

F C
respectively, not on independent

particle paths. Independent particle paths are determined by these equations via
the auxiliary KS single determinantal state, but it is not those auxiliary states
that appear in the Lagrangian nor determine the generalized phase space metric.
Our form of TDKS equations would modify Eqs. (17)-(18) to refer to only N
one-particle functions, (thus each function must be normalized to 1), and use the
kinetic and XC functionals TS ρ

G H
and FXC KS, ρ

G H
from Eq. (3.35) to generate the

potentials in the evolution equations.

One could view the occurrence of the metric terms in the equations of
motion as an annoying complication, but we hold a more positi ve view. First
they assure that whatever the choice of parameters to be used as dynamical
variables, that choice will not introduce unphysical artifacts.  Second, the metric
terms are another component of the theory with potential for providing guiding
principles for development of XC models.  Those terms also allow the
mathematical origin of physical affects to be assigned.

.

The mixed state TDDFT of Rajagopal et al (38) differs from our
formulation in the aspects mentioned above and in the nature of the operator
space where the supervectors reside. A particularly notable distinction is in the

use of the factorization D QQ= † of the state density operator that leads to
unconstrained variation over the space of Hilbert-Schmidt operators, rather than
to a constrained variation of the space of Trace-Class operators.

For a review of TDDFT the reader should consult (36) and Görling
(41).  In the latter work TDKS is developed and a fairly exhaustive li st of
TDDFT references is given.

4.5 Time-Independent NGSO Equations from Time-Dependent Theory

 The critical points of the equivalent classical Hamiltonian I occur at
stationary state energies of the quantum Hamiltonian H and correspond to
stationary states in both the quantum and generalized classical pictures.  These
points are characterized by the constrained generalized eigenvalue equation
obtained by setting the time variation to zero in Eq. (4.17)
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(4.21)

The ground state energy corresponds to the lowest value of R that satisfies Eq.
(4.21) in a self-consistent manner. The variables νν  belong to the nonlinear
manifold defined by the constraints expressed in Eq. (3.24).  Often it is possible
to find intrinsic coordinates for this manifold and convert the problem into an
unconstrained one. Notice in particular that the N-particle state energy, R ,
appears explicitly in Eq. (4.21), thus this equation can be used to determine the
ground state energy, which is the lowest self consistent root of Eq. (4.21) or
excited state energies given by higher self consistent roots. Techniques
commonly used in geometry optimization to obtain saddle points could used be
effectively in this latter context.

5. APPROXIMATIONS

5.1 Model Hamiltonians

In the preceding sections we have introduced effective one-particle
equations, both time-dependent and time independent, for one-particle functions
that determine the density through the expansion

ρ ν νt t t M ri i

i M

,y y y
U V U V U V

= ≤ ≤
≤ ≤
∑

1

;   1 (5.1)

The time-independent case corresponds to fixed time t=0.  The only constraints
on this expansion are that the Hilbert space norm of the orthogonal functions

ν i

W X
should be less than or equal to one, if the functions are to be interpreted as

one-particle states and less than or equal to N otherwise, and the integral of ρ
over space and spin variables should equal the number of particles. The effective
one-particle Hamiltonian that determines these functions in Eqs. (3.29) and
(4.21) in general depends on the density and its derivatives and is composed of
terms that make up the Hohenberg-Kohn energy functional. The equations we
have displayed are exact and lead to the exact solutions of the quantum
mechanical equations.  However finding exact solutions is not possible in
general as (a) the XC potential terms is not known, (b) the metric tensor is not
known in the time dependent case, and (c) it is not feasible to solve the
equations if the dimension of the space of functions is infinite and M = ∞ (i.e.
the standard form of the equations that we have presented).

Approximations thus must be introduced that involve modeling both
the XC potential and the metric tensor, and a truncation of the space within



which to choose the unknown functions ν i

Y Z
to finite dimension r < ∞ .  The

modeling is based on the restricted ansatz chosen for the form of states used to

determine paths that approximateD DN
* #,ρ ρ

[ \ [ \1  and D DN
#

1
] ^

. It can be carried

out, for example, by postulating and fitting functional forms involving the
density, its derivatives and fitting parameters to match the properties of high
quality CI calculations. If the expansion size M r≠  then in analogy to the KS
case the form of the exact potentials wil l be different and thus the chosen
functional forms in the modeling/fitting procedure wil l have different properties.

Traditionally the expansion Eq. (5.1) used in the KS procedure has
been in terms of N

2
real functions of space variables only. In order to allow some

spin-polarized solutions this treatment is extended to allow N real space
functions half associated with alpha spin and half with beta spin. Generalizations
of the KS procedure would allow functions of a more general form and
expansions with a greater number of functions than N in Eq. (5.1). Such
generalizations would be based on auxiliary states other than a real restricted
single determinant. Approximate forms of these generali zed KS equations
would correspond to the approximate forms of the time independent one-particle
equations discussed in this article in the case when M r≠ . More detail is found
in (42).

Approximate time-dependent KS formulations differ more sharply from
approximations to our time-dependent formulation than do the time-independent
ones as they do not expli citly refer to a time-dependent metric term. In time-
dependent KS, these terms either are added implicitly to the approximate XC
potential or combined with other potentials.

5.2 Symmetry Constraints

All of the approximation procedures noted above lead to density-
dependent effective one-particle Hamiltonians.  In such approximation schemes
it is possible to obtain better results by relaxing some physical symmetry
constraints on the form of approximate solutions i.e. allowing symmetry-broken
solutions.   The types of symmetry-broken solutions that are possible by relaxing
spin and time-reversal symmetry have been discussed at length in (42), where
we applied Fukutomes' analysis of the Hartree-Fock solutions to DFT.  An
alternative perspective on that same analysis is that, if more general solutions
were included in the formulation of an approximate Hamiltonian, the resulting
solutions would not be symmetry-broken.  In short, an approximate Hamiltonian
which does not have the generality discussed in the preceding subsection may
yield an energeticall y favorable solution by breaking symmetry. Such symmetry
breaking can be construed as a reintroduction of the missing flexibilit y
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APPENDIX A: GLOSSARY OF MATHEMATICAL
SYMBOLS_

N The convex set of N-particle states_
N ρ

` a
The set of N-particle states that produce the same density
ρ



b
N1 The of First Order Reduced Density Operators (FORDO's)b
N1 ρ

c d
The set of FORDO's that produce the same density ρb

N IP1 ρ
c d

The set of Independent Particle FORDO's that produce the
same density ρb

Np The set of p-particle Trace Class operators that are N-
Representable.e f

1
N

g h
The space of trace class operators acting in the Hilbert

space i Nj N The Hilbert space of pure N-particle fermion states. It is an
N fold antisymmetric tensor product of the Hilbert space of
pure one-particle states.

D N N-particle state operator, if it is not a projector onto a 1D
subspace it represents a mixed N-particle statek l

2
N

m n
The Hilbert space of Hilbert Schmidt operators acting ino Np

H The Hamiltonian super operator (the Hamiltonian
represented as an operator acting on  Hilbert Schmidt
operatorsq r
Inner product in s t2

N
u vw

Submanifold (in general nonlinear) of operators inx y
2

N
z {

.|
x

} ~
Equivalent classical Hamiltonian defined on � ; x is a
coordinate system on � i.e. the points of � are states and
the coordinates of these points are x.�

x
� �

Normalization function of states in �
,

� �
Poisson Brackets defined on tangent spaces of �

ξ The symplectic metric tensor defined on the tangent spaces
of ��

∂
∂t

Superoperator acting on Hilbert-Schmidt operators
producing their time derivative.�
Lagrangians

r

N

��� �� �
Combinatorial coefficient "r choose N"

ρ y
� �

Charge density as a function of space and spin variables
r,σ

� �
Y R C3 2×
L1 Y

� �
Linear normed space of absolutely integrable complex



valued functions of 3 real and 2 complex variables.
Arbitrary elements are denoted by ζ and densities by ρ

L2 Y
� �

Hilbert space of square integrable complex valued functions
of 3 real and 2 complex variables.

ΞN
1 Linear map from the space of bounded N-particle operators

to the space of absolutely integrable complex valued
functions of the variables y.

CN
p Contraction map from N-particle Trace Class Operators to p

particle Trace Class operators.
Φ y

� �
Continuous Fermi field annihilation operator that depends
on the space-spin variable y.

a a†
i i,

� �
Discrete Fermi field annihilation and creation operators� �

1
1

N

NKer

� �
Ξ

Linear space of equivalence classes of Trace Class
operators. The operators are equivalent if there difference

lies in the kernel of ΞN
1�

1N Positi ve cone of space-spin densities derived from N-
particle states.

EH Linear energy functional based on the Hamiltonian H, it
acts on the space of N-particle Trace Class operators.

ET Linear energy functional based on the Kinetic Energy
operator.

EXC Linear energy functional based on the XC terms.

FH Nonlinear energy functional based on the Hamiltonian H, it
acts on the space of absolutely integrable complex valued
functions of the variables y.

OH Nonlinear energy functional based on the Hamiltonian H, it
acts on the space of one-particleTrace Class operators.

DN
* ρ

� � Path of N-particle states, each state on the path corresponds
to a density ρ and is the minimum energy state for that
density.

D DN
#

1
� �

Path of N-particle states, each state on the path corresponds
to a fixed FORDO and is the minimum energy state for that
FORDO.

D#
1 ρ

  � Path of FORDO's, each FORDO on the path corresponds to
a density ρ and is the FORDO that corresponds to the
minimum energy state for that density.

D

D

IP
N

IP

◊

◊

ρ

ρ

  �   � 

and 1

Paths of IP N-particle states and the unique FORDO's that
correspond to these states.

Q* ρ
¡ ¢

Path of Hilbert Schmidt operators



ζ
N

Equivalence classes of N-particle Trace Class operators that
all map to the same function ζ.

ζ
1

Equivalence classes of 1 particle Trace Class operators that
all map to the same function ζ

X N
The set of N-particle Trace Class operators that contract to
the one-particle operator X.   

ρ
N

Set of N-particle Hilbert-Schmidt operators that produce N-
particle states associated with the same space-spin density.

C The complex numbers
CS Coherent State
FORDO First Order Reduced density Operator
HK Hohenberg-Kohn
K&S Kramer and Saraceno
KS Kohn-Sham
NGSO Natural General Spin Orbitals
R The real numbers
TDHF Time-Dependent Hartree-Fock
TDVP Time-Dependent Variational Principle

APPENDIX B: SPACES OF OPERATORS

Bounded Operators £ ¤¥ ¦
The set of bounded operators acting in an Hilbert space ¤ form a

normed linear space. The norm is given by the bound on the operator

X
X

= ∈sup ;
ψ

ψ ψ
ψ ψ

ψ  ¤ (B1)

Trace Class Operators £ ¤1

¥ ¦
The set of trace class operators form a subset of the set of bounded

operators, defined by£ ¤1

1
2§ ¨ © ª

= «¬  ® ¯° < ∞
±² ³ ´ µ°X Tr X X; † (B2)

This set also forms a normed linear space with norm defined by

X Tr X X
1

1
2=

±² ³ ´ µ°†
¶ ·

(B3)



Hilbert-Schmidt Operators ¸ ¹2 º »
The Hilbert Schmidt operators are another subset of the set of Bounded

Operators, defined by¸ ¹2 ¼ ½ ¾ ¿À Á
= < ∞X Tr X X;  † (B4)

This set forms a Hilbert space with an inner product defined by

X Y Tr X Y| ÂÃ Ä Å
= † (B5)

which defines the Hilbert-Schmidt norm

X X X
2

1
2= |

Æ Ç
(B6)

The set of Trace Class operators and Hilbert-Schmidt operators are not in
general contained in each other, but they are connected in the following manner

X X X∈ ⇒ ∈
È É Ê É

2 1

Ë Ì Í Ì† (B7)

 If the dimension of Î is finite all of these spaces of operators are identical.

APPENDIX C: INVARIANCE GROUPS

If X is an operator then its invariance group Inv(X) is defined to be

Inv X U UXU X U U UU I
Ï Ð Ñ Ò

= = = =; ;  † † † (C1)

If v is a vector then its invariance group Inv(v) is defined by

Inv U U U U UU Iv  v v  † †
Ó Ô Õ Ö

= = = =; ; (C2)


