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1. INTRODUCTION

Among the many ways in which explicit time dependenceappeasin
the quantum mechanics of molealesis via double time propagators (1), notably
the dedron propagator and the polarization propagator. Some of the historical
development regarding those quantities motivates and informs the present work,
hence asummary is appropriate. Diverse demupling schemes have been devised
and used to generate approximationsto bah of those propagators (for example
2, 3). A mgjor problem in thefirst order approximation for the polarization
propagator, [equivalent to the Random Phase Approximation (RPA) - also
known as the lineaiized Time-Dependent HartreeFock (TDHF) approximation],
istheinconsistency of the ground state involved in the definition of that
propagator. The adjoints of the perturbationaly correded excitation operators
produced by RPA do not kill this ground state, as they should if the theory were
consistent. Sometime ago it was shown (4) that the neaest one canget toa
consistent ground state is via states of the Antisymmetrized Gemina Power
form. Subsequently theresulting generalized RPA theory was used to calculate
the excitation spedra of small moleailes (5).

The solution to the mnsistent ground state problem turns out to be
closdy related to the theory of coherent states and the theory of group
representations. Taken together, the two topics involve the onstruction of
group-related generalized phase spaces. Within this context, Ohrn and co-
workers (6) have exploited the Time-Dependent Variational Principle (TDVP)
asameans of obtaining approximate solutions to the Time-Dependent
Schrédinger Equation (TDSE) for systems of electrons and nucle (7). By
application of this principle to coherent states of both e edrons and nuclei, the
Born-Oppenheimer approximation is avoided, hencethetime evolution of
eledronsand nuclel can be treated efficiently without first finding eledronic
potential energy surfaces, then studying the coupled maotion of nuclel on these
surfaces. Typically, the variables used are nuclea coordinates and momenta and
complex parameters labeling the dedronic state. The approximate solutionsto
the TDSE are characterized by the evolution paths of these variables as
determined by generalized classcd equations of motion oltained from the
TDVP.

Here we summarize our recent work to extend and apply these ideasto
the powerful practical and conceptual tods of Density Functiona Theory (8).
Spedfically, the formaliam used in the TDVP is extended to include mixed
states, with the states labeled by the densities as functions of e edronic space
and spin coordinates. (In the treatment presented here we do not explicitly
consider the nuclei but consider them to be fixed. Elsewhere we shall show that
it isindee straightforward to extend our treatment in the same way as Ohrn et
al. and oltain equations that avoid the Born-Oppenhemer approximation.) In



thisarticle we obtain a formulation of exact equations for the evolution of
eledronic space-spin densities, which are eguivalent to the Heisenberg equation
of motion for the dedronsin the system. Using the observation that densities
can be expressd as quadratic expansions of functions, we also oltain exact
equations for these one-particle functions. Not al the proofs and detailed
andyses are given here, but enoughis presented to delineate the entire formal
structure.

A brief summary of motivation from the DFT perspedive also may be
helpful. On the whole, contemporary versions of Density Functional Theory are
presented in two separate anceptual and logicd frameworks, one each for time-
independent and time-dependent DFT. Even within the constrained search
formulation of time-independent DFT, there ae several rather deep and
interconneded guestions. Commonly these ae discussed in terms of symmetry
(and symmetry breaking), occupation number distributions, and functional
differentiability. Their resolution isimportant for bath fundamental reasons and
to provide pathways to more powerful and reliable DFT approximations.
Implicit in them istheisaue of mixed states. Because austomary formulations of
time-dependent DFT are separate, it is not evident how resolution of those issues
in the time-independent case would carry over. Further, theimportance of
parameter-space metrics in the work of Ohrn et al. versus the absence of such
metrics in conventional time-dependent DFT suggests strongly that a
formulation dredly from the TDVP would be beneficial and clarifying. Among
other things, such aformulation would provide arigorous basis for the use of
dynamics in parameter space including mixed states right from the start, as well
as asignificantly enhanced foundation for constructing approximations.

2. MIXED STATE TIME-DEPENDENT VARIATIONAL
PRINCIPLE

Conventional presentations of DFT start with pure states but sooner or
later encounter mixed states and densities (ensemble densities is the usual
formulation in the DFT literature) aswel. These aise, for examplein
formation or breaking of chemicd bonds and in treaments of so-call ed “static
correlation” (situationsin which several different one-eledron configurations
are nealy degenerate). Much of the DFT literature treats these problems by
extension and generdization from pure state, closed shell system results. A
more indusively systematic treatment is preferable. Therefore, thefirst task is
to oltain the Time-Dependent Variational Principle (TDVP) in aform which
includes mixed states.

In alandmark publication in 198L, Kramer and Saraceno (7) [hereafter
“K&S' to digtinguish from Kohn-Sham, usually denoted as “KS’ in the DFT
literature, a usage we fall ow] showed how to use the Time-Dependent
Variationa Principleto construct generdized classcal equations of motion for



quantum mechanical state vedors in terms of labels that characterize those
vectors parametrically. (Obvioudy, “clasgcal” in this setting refers to the form
of the equations, not the @mntent.) This construction leads to equations that
determine evolution pathsin a parameter space In the ase of a parameterization
that coversal of state spacethose ajuations are entirely equivalent to the exact
Time-Dependent Equation Schrédinger Equation (TDSE) and to approximate
TDSE's for parameterizations that label a subset of statesin a continuous
fashion. In their work they showed that in cetain cases the parameters could be
related to group coset spaces (9) and give rise to families of Coherent States
(CS) (10-13), where the set of coherent states is generated by the action of a
coset on areference state. A familiar exampleis the set of single determinantal
states, in which al the states are generated by the action of a coset of the group
of one-particle unitary transformations acting on a given single determinantal
reference state, leading to the Thoul essparameterization of these states (14). In
the @ase of group-generated CS's, the labels are amplex variables that
holomorphically (complex analytically) parameterize a set of N-particle sates
and the generali zed dynamics takes placein the manifold of these states (which
in genera isnonlinear). In general not all N-particle states are produced by the
action of the chosen group on thereferencestate. The resulting equations of
motion correspond to the restriction of the TDSE to this sibmanifold. This
formulation of approximate TDSE's has been examined at grea length in many
contexts (6,15-18).

The most genera formulation isin terms of red parameters, as any
complex parameterization can always expanded into red and imaginary parts,
whil e the converse mnstruction (complex parameters from combination of real
ones) isnot always possible. Thereal parameterization does not take one
diredly into the group and coherent state formali sm. However in the context of
DFT thereal parameterization is particularly natural, sncethe pervasive
perspedive isthat N-particle states are labeled by densities which arereal-
valued functions of space and spin variables.

The K& S treament isin terms of pure N-particle statesi.e. vedorsin
an N-particle Hil bert space Asnoted, to encompassDFT in its most general
form one must consider mixed N-particle statesi.e. states described by N-
particle Density Operators. Thusthis dion extendsthe K& S treament to
include mixed states by using the vedor space structure of N-particle operator
space and applying the K& S treament to state "super vedors' in this operator
vector space|[lf one can definealinea structure on a space of operators, then
those operators can be viewed as supervectors and any map that maps alinea
operator spaceinto itself can be viewed as a superoperator. Theterms
supervector and superoperator were first introduced by Zwanzig (19)] Although
most of the formal manipulations and expressons areidentical in appeaance
(with those of K& S), the interpretation in terms of operators is quite different.



Note to the reader: the notation can be somewhat intricae, thusit is
summarized in Appendix A.

2.1 Statesand Super operators

The mixed and pure states of an N-particle fermion system can be
described by positi ve and normalized operators, 8y, , which form a monvex set
contained in the space of Trace Class (Appendix B) operators 31(9{ N ) actingin
the N-particle fermion Hil bert space 3¢ " .

Sy :{DN .D"20Tr{D"}=1D" Dgl(fHN)} (2.1)
where H N isdefined to be the N-fold antisymmetrized tensor product of the
one-particle Hil bert space #¢*.

Positive dements, X, of the veaor space of operators 31(9{ N ) can

always be expressed as a product of a Hil bert-Schmidt operator (Appendix B)
with its adjoint as X=QQ". [The Harriman (20) decompositi on of the density
into positive sums of products of orbitalsisin fact a very spedal case of this
relationship, which will be important later.] One neadsto keep in mind that this
factorization isnot unique however: QU for any unitary U produces the same X.
Moreover UQ produces the same X for U belonging to the invariancegroup o X

(Appendix C). The spaceof Hil bert-Schmidt operators, 32(3{ N) , isaHilbert
spacethat hasan inner product defined in terms of the trace operation

(XIY) = Tr{x"v} 2.2)
Thisfact al ows us to expressthe set 8, asthe unit spherein 32(0{ N ) as

Sy ={Q(QIQ) =1QUB,(3" )} (2.3)
The action of the Hamilt onian, H, can be expressed as a superoperator mapping
the Hil bert space 32(0{N ) intoitsalf by

H:Q - HQ Q mz(fHN) (2.4)
The superoperator H inherits the unboundnessof H and its domain is defined as
Dom(H) :{Q, HQ 532(9{“‘)} (2.5)

In the following we mnsider Hamiltonians, H(t), that are explicitly time

dependent. The definiti ons Eq. (2.4)-(2.5) also hold without modification in
these @ses.



2.2 State Evolution Equations

Now consider operators Q that depend on real parameters x, which can
be considered as coordinates of points of alinea or nonlinear manifold M of

operators Q contained in 32(3{N), [including 32(9{N)itself], i.e thered
coordinates x denote apoint Q OM . Following K& S generdlized classcd
equations of motion for evolution peths x(t) can be obtained for these operators,
which are given by
{%.€} =%
0= 20 (QUIHQ(x)) (26)
S0 (QIQK)
The Poison brackets are defined for functi ons f:M - C by

{f.o} = z E.J 2.7)

where the antisymmetric matnx thaI def| nes a "phase space' structure for the
manifold was sown by K& S to be given by

(2.9)

X' =X

Note that for general parametenzan onsthis metric matrix is neither skew
diagoral nor constant; seebelow. The ejuations of motion expressed in Eq.
(2.6) are obtained by using the Principle of Stationary Action, A =0, with
Lagrangian

, (Q(X(t))[i:t- ﬁ(t)}o(x(t»)
L(Q(X(t))’Q(X(t)) ’tj:R QOO @9
and Action
A= ffa( ())T,t)dt (2.10

where the end pomts(x(tI ), ( )) of the paths are held fixed. The

"superoperator", i % , that producesi times the time rate of change of operators

and is defined in a way anal ogous with I:I(t) in Eq. (2.4), isnot sef-adjoint on



the space 32(3{ N ) . Therefore the processof taking thereal part of theinner
product in Eq. (2.9) is sgnificant.

The metric term Eq. (2.8) isimportant for all cases in which the
manifold- M has non-zero curvature and isthus nonlinea, e.g. in the cases of
Time-Dependent Hartree Fock (TDHF) and Time-Dependent Mullti
Configurational Sdf-Consistent Field (TDMCSCF) calculations. In such
situations the metric tensor & varies from point to point and has a nontrivial
effed on thetime evolution. It plays the role of atime-dependent force
(somewnhat like the | ocati on-dependent gravitational forcewhich arisesin
general relativity from the aurvature of spacetime). In the @ase of flat i.e. linea
manifolds, as are found in Time-Dependent Configuration Interaction (TDCI)
calculations, the metric is constant and does not have asignificant effect on the
dynamics.

If theinversein Eqg. (2.8) does not exist then the metricissingular, in
which case the parameterization of the manifold of statesisredundant. That is,
the parameters are not independent, or splitting o the manifold occaurs, asin
potential curve @ossng in gquantum moleallar dynamics. In bath cases, the
causes of the singularity must be studied and revisions made to the coordinate
charts on the manifold (i.e. the way the operators are parameterized) in order to
proceal with cdculations.

The form of the action principle given above was first applied to
guantum mechanics to describe the time evolution of pure states (i.e.
wavefunctions) by Frenkd (21) and leadsin the case that the manifold M isall
of K" to the TDSE. We have extended it to more general operator manifolds

MO 32(0{N) in the manner outlined above, and for the ase M :32(9{N) ,

have shown (22) that the equations of motion (2.6) are equivalent to the
Heisenberg Equations of Mation (HEM) for the N-particle state operators DV .

ip\ :[H,DN]; D" =QqQ"; Tr{pV}=1 (2.11)
In this particular casethe x =(x,,X,) parameterslabel the Q operators by
QX) = Q(xq,%,) = chl|q)k><q)l| (212
1<k,l=<d

r
where xy = Recy, X, =Imgy, d :(NJ , the points x =(x4,X, ) lieon the

hypersphere

d
Z (X12k| + X3y ) =1 (213
&=

1=1



r
{tbk;ls k< ( NJ} isa complete orthonormal basis for (™ and r isthe
dimension of one-particle space, which in the exact caseisinfinite

The auations of mation (2.6) can be expressed compactly in matrix
form as
dx 4, 0€
—_= r] _—
dt OX
and solved by standard integration techniques (23).

(2.14)

The preceding evolution equations also can be used to generate
equations for stationary states by setting the time derivative to zero gvingthe
two equivalent forms (signified by the double arow):

{x,€}=0; fordli < n

‘1‘;—8 =0 (2.15)

3. TIME INDEPENDENT DENSITY FUNCTIONAL
THEORY

In order to apply the precaling devel opment to states parameterized by
densities we must first analyze the structure and properties of thistype of
parameterization.

3.1 Definition of the energy functional of the density

Therdationship between N-particle states, in which we include mixed
states, represented by N-particle operators as defined in Eq. (2.1), and the space

spin density p(y) isnot 1-1. Here and throughout the foll owing development, y

isthe @mbined space-spin variable (r,o). These facts are the esence of the

power and simplicity of the density functional method and at the same time the
source of its conceptua complexity and intricacy. The power and simplicity
come from being able to characterize an N-particle system by areal positive
semi-definite function of asingle 3D spatia variable and ane 2D complex spin
variable, whil e the conceptual complexity and intricacy come from devel oping
an expli cit understanding of how such a density determines a N-particle sate.

To devel op a framework in which to treat these topicsin arigorous
manner for bath time-dependent and independent systems, we adapt the
constrained search of Levy (24) to generate a well -defined energy functional of
the density, then foll ow a constrained gptimization analysis of the problem as
described, for example, in the bodk by Hestenes (25). These techniques allow



one to spedfy the way paths of N-particle density operators can be defined in N-
particle operator space such that they arelabeled by densitiesin 1-1 fashion. The
expedation of the Hamilt onian with resped to N-particle states on these paths
then becomes a well -defined functional of the density p(y) and the ground state
energy is the minimum value of this functional. The treatment is ssmewhat akin
to that of Kryachko and Ludefia s“orhits’ (26) but differs (in an esential
fashion) in determining the paths by optimization criteria which asaure that the
resulting functionals have well -defined functional derivatives irrespedive of the
topology of the density. Kryachko and Ludefia, in contrast, identify orbits by
employing the Bader density surface aiterion (27), which means that those
orhits are mnneded inescapably with the moleaular point group symmetry.
Even at the time-independent level, moleaular structure and banding dften
involve dhangesin the point group symmetry, so that inescapable mwnnedion
seams to intertwine two issues better left apart. Dynamics sSmply makes sich
conceptual and procedural isaues harder.

First we define the linea map that produces the densities from N-
particle states. It isamap from the space of N-particle Trace Classoperators
into the space of complex valued absol ute integrabl e functions of space-spin
variables

By 3N) - L(RPxC?) = Ly(Y) (3.1)
defined by
2(y) == (X)) =Tr{e"(y)o(y)x} OL(Y). (32
The field operators used in the definiti on above are given by
®(y)= > #iy)a (33

1<i<r
in terms of the discrete field operators, {ai ,aiT} , which are defined using a basis
of one-particle functions of space and spin {¢;;1<i <r} and their action on the

vacuum vedor | @)

al|e)=|9:) @)
The fidld operators satisfy the fermion anti-commutation relationships

[o(y).@%(y)], =a(y-v)
[a.a]], =3,

Thekernel of =}, isalinea subspace of 31(9{ N) , which we use to define a

(3.5)

equivalencerelationship on 31(9{ N)



X ~Y o X=YOKer{Z}{} = =} (X) =2} (Y) =¢ (3.6)
where the doubled arrow indicates equivalent statements. We denote these
equivalence dasss by [Z]N and note that they form alinea space in quotient

. 3]_(9-(j N ) —1 .
notation, Ker=l ° Themap =y, , when redtricted to the cmnvex set of
=N

N-particle states, 8 , hasvaluesin the convex set, P, , of positi ve functions
in Ly(Y) that integrate to the value N

P ={pio(y)2 0. p(y)ay = N} (3.7)
Harriman (20) has shown that thismap is "onto" i.e. any element of P, comes
from at least one dement of 8, . Note that this property does not rule out the

posshili ty that an element of P, can also come from operatorsnot in 8y, . This

"onto" property should be mmpared to the Gase that arisesin the N-
representabil ity problem (28) where not every positi ve two-particle operator

comes from astatein 8y, so the contraction map in that case does nat have the
“onto” property.

The energy functional defined by the Hamiltonian, H,
Eq:Sy - R
3.8
Eq(D")=Tr{HD"} 38)
is, however, not uniquely defined on the equivalence dasses [p]N ,i.e itisnot

. B(#") . N
defined on the space Ker=L asmany different D" 'sgivethe same p

—N
whil e producing different values E, ( DN) . ThusEy, isnot well-defined as it is
multivalued on individual equivalence dasses. In order to oktain an energy

functional that iswell-defined, we cntinue with the constrained search logic
and define another functional in terms of the space-spin density as

Fule)= M E,(0Y)=E(DNR) @9

where 8y (p) =[p],, n 8y isthe set of N-particle states that producethe same

density and DN (p) isthe minimizer in the set 8y (p) . Note that we exclude the

case of anon-unique minimizer; seeSavin (29) for arelated discusson. The
minimization of Eq. (3.9) contains threetypes of constraints, normalization,
positi vity and fixed density. The normalization and positi vity constraints can be



+
handled by the factorization D" = _0Q , which leads to the energy

Tr{QQ'}
functional definition
_ Tr{HQQ'} _
O ey O
_ g (QHQ)

= Min——=E,(Q(p

QD<p>N (QlQ) H( ( ))
One can show (30) that densities are square integrable and thus bel ong to the
Hil bert space L, (Y) of squareintegrable functions. This all ows one to define
the set, (p),, , of feasible Q's by a quadratic constraint function for afixed p as

gBy(H") - Ly(Y)
9(Q.p) =0 (31D
9Q.0)==1(QQ")-p
The variation in Eq. (3.10) can be caried out by using a Lagrangian function
L(QA.P)= Ex(Q)~ [ A)aly)dy (312
Y

whose stationary points determine the @nstrained minimaof E(Q). By
considering the sensiti vity of the minimizer, Q.(p) , to veriationsin p and
chedingthat cetain conditions on the first and second derivatives of

L(Q,A, p) are satisfied Hestenes (25) showed that one can define apath of

solutions, Q.(p) , parameterized by p. On this path one can define an energy
functional

Fu(p) = En(Q(p)) (313
and a Lagrange parameter functional, A(p) , which can be identified with the
functional derivative % of R4 (p) along that path. Note that the energy isa 1-1

functional of the density on this path and simultaneously that the functional
derivative is defined onthis particular path. It is possble define other pathsin

32(0{ N ) on which the energy is also a 1-1 functional, but on those pathsthe
foll owing crucial fact will not be true



Eo = Min {Fy(p)}
PP (3.14)
D={plply)20 [ p(y)ay =N}

where Eyisthe ground state energy of the system. The paths Q.(p) clealy

define pathsin 31(9{ N ) by DN (P)=Q (p)Qk(p)T . The precaling construction
of the energy functional is discussed in more detail in (30).

The eplicit form of the functiona Fy is of course unknown andin
practicd applications hasto be approximated. In order to facilitate the creation
of these gproximations one deamposes Fy into a sum of other functional s that
focuses all the unknowns into ane @mponent, the exchange-correlation
functional, Fxc.

Fu(0) = Fe(p) + Fxc(p) + Fan(P) + Fee (0) + Fr(p) (315
(with subscripts C, XC, eN, Ext, and T denoting Coulomb, exchange-correl ation,
eledron-nuclea attraction, external, and kinetic energiesrespedively). It is
crucia toremark that (3.15) is not the Kohrn-Sham decmposition familiar in
conventional presentations of DFT. Thereisno reference model, nor auxiliary
system involved in (3.15). From the @nstruction presented aboveit is clea that
in order to maintain consistency and to define functional derivatives properly all

these functionals need to ke defined on the same path in 32(0{ N ) . Thesetwo
observations lead to what may be unfamiliar definitionsfor the kinetic energy
functional and the exchange-correlation functiona, as foll ows:

1] ply)ely)
F == | ————~dydy’
C(p) 2 ”y_y,” yay

FT<p>=Tf{‘%ZD?{Q*<p>Q*<p>*}} =Tr{1Q.(0)Q(0)'} = E¢(D"(p))

3.16
Fuc(p)= Tr{[é]@(p)@(pf} - Fu(p) = Exc(DM(0) 219
Fu)=- | o) mdy

Fea(p)= | o) 3 VI

Notein particular that the exchange-correlation functiona that emergeshere
does not involve the kinetic energy. From the perspedive of the DFT literature,



(3.16) isaformulation of the Hohenberg-K ohn functional that is constructed to
ensure that the functional derivatives required for variational minimization
actually exist. Wereturn to these issuesin Sed. 3.3. Also notethat in thetime

dependent casethe externa potential V(r; )is often considered to be explicitly

time dependent and further, that if nuclea motions also are taken into acoount
theeN termisalso time dependent.

3.2 Factoring the Ener gy Functional through the First Order Reduced
Density Operator.

An appealing way to apply the mnstraint expressed in Eq. (3.14) isto
make onnedion with Natural Orbitals (31), in particular, to expressp asa
functional of the ocaupation numbers, n, and Natural General Spin Orbitals
(NGSO's), {t;} , of the First Order Reduced Density Operator (FORDO)
associated with the N-particle state appeaing in the energy expresson Eg. (3.8).
In order to introducethe variables n and {(; } in awell-defined manner, the
constrained search processEq. (3.9) neals to be factored into two stages. The
first seach isover all N-particle states that produce the same FORDO and hence
produces an energy functiona of the FORDO. The semnd seach is over al
FORDO's that correspond to afixed densty, thus producing an energy
functional of the density. This sequential processconstructs pathsin N-particle
state spacethat arelabeled by FORDO's and pathsin the set of FORDO's that
are labeled hy densities. On these pathsthereis 1-1 correspondence among N-
particle states, FORDO's and censities.

FORDO's are determined by their occupation numbers and their
NGSO's, ardationship that is only unique up to wnitary transformations that mix
NGSO's with the same occupation numbers. However one an parameterize this
association to make it unique. Hence on the paths determined by the constrained

energy functional, one has a 1-1 correspondence between {n ,y; } and densities,
and densities thus can be viewed as afunctional of {n,y;}. This construction

leads to variational equationsfor the ground state energy in terms of occupation
numbers and NGSO's.

The FORDO is defined by alinea contraction map, Cﬁ, , given by the
following



CliBy () - By

D'=c}(D")
D = Tr{ajTai DN} (317
r
D! = iJzleijlaiTaj
The energy functional, O, (Dl) , of the FORDO is defined by
0.(0)= i, (0¥, 02(0) @19

in terms of the energy E,, on the path D#N(Dl) , Where SN(Dl) = [Dl]N N 8y

isthe set of N-particle states that contract to the same FORDO D*. (Note that
non-positi ve operators also contract to D* thus the content of [DY]y isnot limited
to states.) The equivalence dasses [X ], ; X Dﬂl(ﬂfl) are defined in an
analogous manner to [p],, , by replacing=}, by Cy, ., Ly(Y) byﬂl(flfl) in Egs.

(3.1, (3.2), (3.6) and considering off-diagonal valuesin Eq. (3.2). The energy
functional F; from Eqg. (3.9) then can be expressed as

Fq(p)= Min O,(D')=0,(Dip (3.19
(0)= v 04(0%)=0u (o)
intermsof O, defined on the path Dy(p) . Here Syy(p) =[p], n 8y1 istheset

of FORDO's that produce the same density, 8y, isthe set of N-Representable,
FORDO'sand [p]1 the set of one-particle Trace Classoperators that map to the

density p. The euivalence dases [p]1 in one-particle Trace Classoperator
space 31(9{1) are defined analogoudly to [p]N , which arein N-particle operator
space Thepath D."(p) can then be expressed as the composition

D (p) = D;*(D}(p)) =(D;' - D} )(p) (3.20)
A FORDO D! always can be expressd in natural form as

D" = zni|‘l’i><4’i |= Z|Vi><‘/i|

I<i<r 1<i<r
(wilwj)=0y: (viluj)=no;; 0sn <1 (3.21)
n = N

I<i<r



where we have introduced the occupation-number-normalized NGSO's{v; } . On
the path D,(p) thereisal-1 correspondence

p - Di(p) - {vi(p)i<i<r}=v(p) (322
Asthisreaionship is 1-1, the density p can be expressed asafunction of v, i.e

p=p(v),and bah pand v can be treated as equivalent, but different, variables

for the argument of the energy functiona F . The minimization of Eq. (3.14)
that determines the ground state energy then becomes

Eq = Min{Fy (v)} (323
The feasible region X is defined by the onstraints

hy (V)= i|vi|2— N=0
h(v)=|v,[ -1=0 (324
hj(v):<vi|vj>:0; i # ]

and the mnstrained minimum of Eq. (3.23) can be obtained from the Lagrangian

Le(v)=Fy(v)- Z)\ij h, — hy (325
1<ij<r
Noting that
)= (ylvixvily) (3.26)
I<I<r
one has, viathe chainrule,

%:ﬂa_p:ﬂvi (327)
ov, op dv; p
It is useful to note that Eq. (3.27) defines the action of alocal operator

Fut ge1 g by

op
Fy F, _ Fy {5&. }
y)= = Vily)=| —V; |lY (328)
From Eg. (3.25) and the change of variablesin Eq. (3.27), we obtain Euler
equations &—F = &—F =0, which can be expressd asthe generalized
oV, v,
eigenvalue problem

b=
(5—H—qui = z/\ijvj (3.29
P 1<]Sr



and its complex conjugate. The wmponent potentia functionals can be obtained
by taking the functional derivatives of Eq. (3.16) leading to exact, but in some

OFc Fp Fyxe Fa o,

cases, unknown expressgons for —=, , , and —2L . These
P dd o o o
derivatives are all evaluated on the same path D (p) = ( D) o Di)(p) , which

again, leals to the definiti ons of T—gand 5':5—;0 aslocal potentialsin the one-

particle Eq. (3.29) for the density.

3.3 Relation with the Conventional K ohn-Sham Procedur e.

Thereader should note that no restrictions were placed on the form of
the density expansion Eq. (3.26); in particular thereis no limit on the number of
terms. As already noted, therefore Egs. (3.29) are not conventional Kohn-Sham
equations. Rather they are an exact one-particle form of the Hohenberg-Kohn
variation procedure and use Hohenberg-Kohn potentialsin the definition of the

eff edive one-particle Hamiltonian (5;:—; - uJ . They have some kinship with

the generalized Kohn-Sham equations treated, for example, by Levy and Perdew
(32) but thereis il akey difference Unlike Kohn-Sham procedures, in (3.16)
no auxiliary state has been introduced to provide a partitioning and regrouping
of theterms.

At leadt for the @se of a non-degenerate ground state of a closed shell
system, it is possble to delineate the standard K ohn-Sham procedure guite
sharply. (The caveat isdireded toward isaues of degeneracy at the Fermi level,
fractional occupation, continuous non-integer eledron number, and thelike. In
many but of course not all works, these aspeds of the theory seem to be
intertwined in an unanalyzed way with incompatible assumptions about single
determinantal KS states.) For that spedfic case, the standard KS auxiliary state
isasingle determinant of singly occupied orbitals, which is an Independent
Particle Sate (IPS, (any conventionally doubly occupied orbitals smply occur
twice). Theform is appealing because it incorporates Pauli exclusion explicitly,
and is explicitly N-representabl e whil e being easy to manipulate.

With these mativational remarks, we now remver standard KS theory
(in the particular ingtancejust defined) from Eq. (3.16) for this gedfic case but

with an important new constraint. Let 8y,p(0) bethe set of all Independent
Particle FORDO's corresponding to p with predsely N non-zero terms:



Dip = ) |¢i )i |
i} LIZN (3.30)

<¢i |¢j> =9
By Harriman’s theorem already cited thereis dways at least one such FORDO

for each legitimate p. We now define the KS kinetic energy functional, which
for afixed number of particlesis system independent, as

Tes(P)= Min (p)Tr{TD,lp} = ET(D|’\F',<>(p)) (3.31)

where E; isdefined in Eq. (3.16) and D,“F',o(p) isthe unique Independent Particle
N-particle state that corresponds to the minimizer Dip, () of this constrained
optimization, which if the conditi ons described in (25) are satisfied determines
paths Dipe (0) and Dify(p) in 31(9{1) and 31(9{N ) respedively. It should be

noted that the paths Dip, () and Djs, (p) arein generd very different from the

paths Di(p), D*l(p) and DY (p) . The definitionsin Egs. (3.16) can then be

transformed to standard KS form by regrouping and defining difference
functional s between exact and independent particle paths in the foll owing
manner: (note that the HK kinetic energy and X C terms involve a system

dependent path DN (p)in N-particle state spacei.e Fr(p) = ET(D*N (p)) and
Fxc(p) = EXC(D*N (P)))
'ET(P) =Tus(p)~Fr(p) = ET(DI,\Fl’O(p)) - ET(D*N (P)) (332

then

Fr(p) =Tks(p)+ Fr(p) (333
The KS XC potential term can then be defined by

Fxcks(P) = Fr(p)+ Fxc(p) (3.39)
leading to the identification

Fr(p)+ Fxc(p) = Ts(p) + Fxcks(p) (3.39)

By construction, KS functionals are well -defined, (but note that the XC
KS term is defined with the help of two distinct paths) and give well -defined
functional derivatives, so their variation proceeds as in the preceding sedion,
leading superficially to the standard KS equations.

Thereis, however, an important distinction that seems to have been
missed in mogt if not all of the DFT literature (29), (33). In esentidly all
presentations of the sandard KS procedure, the functions corresponding to



{¢;} arerestricted to thereds, usualy implicitly. In fact thisrestriction cannot

be true in general without either a violation of the mngraintsto the proper path
or, alternatively, forcing the extremum of the mnstrained functional to li e above
the actual energy minimum. (To illustrate the point, Harriman's construction of
single-determinants associated expli citly with a spedfied densty relied upon
complex orbitals) The prodf is smple. Harriman’stheorem provides at least one
determinant for each feasible density but with the orbitals restricted only to

L,(Y) . Fukutome (34) has shown, however, that all possble single

determinants with orbitals from L,(Y) separate into eight digtinct classes

acoording to spin andtimereversal symmetries. Therefore all posshle densities
can be so clasdfied (the densities associated with each classhave a unique
topology). Since some of the dasses have orbital forms which are manifestly
complex, it follows that to incdlude all feasible densities in the paths and at the
same time search them with asingle KS determinant, the determinant must in
general have complex orbitals.

There aetwo immediate mnsequences of thisresult. First, isa
previously unappredated ambiguity in the so-call ed adiabatic connedion

formulation of Fyc ks[p]. In that treatment, the functional is found from a Paulli

coupli ng constant integral which usualy is sid to conned from “the non-
interacting ground state”, i.e. the KS determinant, to the full y interacting ground
state. If however, the KS determinant is restricted to red orbitals, then in
general that coupling constant integral will not be mwnneding to the ground state
of the non-interacting system but only an upper bound to its ground state.
Secondly, in genera, the exact KS potentia will not be a pure real function,
contrary to the unstated assumption in essentially al of the literature.
Alternatively, if oneindstson red orbitals, then the single KS determinant must
be given up and replaced by a suitably chosen and characterized multi-
determinantal auxiliary function. Taken together, these previoudy unnoticed
aspeds of KStheory also provide asignificant opportunity for improvement in
practicd approximations, atopic that we addressin Sedion 5.

In the precading dscusgon we have expanded the densty in terms of

N < M <r functionsthat belong to the one-particle Hil bert space #¢* such that
their norms arelessthan or equal to one and the trace of the density is equal to
N. All these expansions could in principle be exact; thereis no need for
M =r =, asisclealy demonstrated in the KS procedure, where M = N . If

M <o and r = oo, then new forms of auxiliary states, i.e. different from single
determinantal ones, areimplicitly introduced.

Another classof expansionsisaso possble, but in these the functions
cannot be interpreted as belonging to the Hil bert space of one-particle states,



even though they are functions of one space and ane spin variable and d belong
to a Hil bert space In such expansions the norms of the functions are lessthan or
equa toNand 1< M < o, In the extreme @seof M =1one can even express

the density as p = ww , where w = p% . Thisfactorization leads to the Pauli

potential (35); we shall discussit in detail elsewhere (30). For each value of M,
whiler = o one muld choaose a different partitioning of the XC and kinetic
energy in asimilar fashion to Eq. (3.35). Such choiceswould be dosdy related
to the generalized K S schemes already mentioned.

4. TIME-DEPENDENT DFT.

4.1 Characterization of the Lagrangian asa function of the density

The definition of the Lagrangian in Eq. (2.9) in terms of the paths x(t)
neads to be modified when time dependent densities p(t) are considered asthe
variables x(t) in Eq. (2.9), as £ isnot awell-defined functional of p(t). Itis

necessary to proceal somewhat parall e with the determination of pathsin the
precaling sedion in order to surmount this difficulty. In the mntext of K&S
therefore, the Lagrangian which results wil | have no new content; rather, the
andysisisrestructured to make the functional dependence on the density predse
and well -defined. First define an intermediate Lagrangian

£(Q0),Q0)" ). A(0) =5(Q0.Q0) " 1) - [Atyatyy @D

where L(Q(t),Q(t)T ,t) isthe Lagrangian defined in Eq. (2.9), A(t) atime
dependent Lagrange multiplier function and the cnstraint function g(t) is
defined for afixed time-dependent p as

o(t.y) ==k (D) Jy) - At.y) =0 (42)

The equdity in the preceding constraint isin the sense of the L,(Y) norm for
fixed t. The actual Lagrangian controlling the dynamics then is defined as

(p(t) = Q(t)gipw){al(oa),cs(t)* PO}

L CICOCICONNED)
where the paths Q. ( p(t)) DBZ(G{ N ) are defined by the @nstrained

minimization in the same manner asin the time-independent case. This
Lagrangian is of the same form asin (7) modified only by constrained search
considerations in order to get awell-defined functional of the time-dependent
density.

(4.3)



4.2 Exact Equations of Motion in terms of the Density
With the Lagrangian in hand, the principle of stationary action

SA = f* 3L(p(t))dt =0 (4.4)

leads to the equation of motion
{p.E}=p (4.5)
where the equivalent classcal Hamiltonian is given by

_(p(t) _ (Q(A()IKQ (o(1)))
He)= s(p(t) (@ (eI (o(t))

and the inner productsin Eq. (4.6) are asdefined in Eq. (2.2). The Poison
brackets are defined in a fashion smilar to Eq. (2.7)
St(p(t) 9(p(t)
)= [ S0 gy A2
oy 9P0Y) op(y’)
but now with ametric integral kernel, which depends on p(t) OL,(Y)that is

defined by &(y',y)=(n"*)(y",y), where
5 0 5 0

)= i{éb(y') () () 6b<y>}'”(Q*(b)'Q*(p))

The time-dependent Eq. (4.5) interms of the density is exact and equivalent to
the full Heisenberg equation of motion when no approximations or models are
invoked. It isthus worthwhile to dsplay it in more detail

do(t) _ o %(p)

-7 (ty,y')——=dydy’ (4.9)

dt I on(y) dp(y’)

Thefirg term in thisintegral isadeta function and produces pointwise
equations

(4.6)

dy’ 4.7

(4.9)

do(t
dt

, 5e
Y) js(t,y,y')ﬁdy' (4.10)
Y

dp(y’)

4.3 Exact Equations of Motion in terms of one-particle Functions

The time-dependent density can be expressed as a sum of products of
unnormalized, time-dependent NGSO's ana ogoudy with Eqg. (3.26)

p(t,y) = z {y|vi®))vi(t)]y) (4.12)

I<i<r

and one can set up a 1-1 correspondence between p(t) and

v(t)={v;(t)1<i <r}. Thiscorrespondence dlows usto expressthe



Lagrangian asafunctional £(v,V) . Note however that unlike functionals used
in the Time-Dependent Hartree Fock approximation (6), this Lagrangian is not
complex analytic in the variables(v, V) separately.
The eyuation of mation Eq. (4.5) and Eq. (4.9) can be expressed in
terms of the variables v(t) ={v;(t)l<i<r}
[vi.&}=v, ={v; £} =V, (412
In more detail theserdationsare
dv; (t)

- > &i(v)

oE(v(t))

oV

I<jsr J

) 4.13)
X0

dt I<jsr J

where
(4.19)

and &; = (n—l)ij . Using Eq. (4.11) the omponents 0,€ of the gradient of the

equivalent clasdgcal energy can be expanded as

SE(V(t)) ¢ OE(V(L) dp(y) . ¢ OE(V(Y))_ e
v ) oy YT ) YIS 619
and
SE(v(Y) _ 1 [eH(v() 38(v(1)
o _3(V(t)){ o, (v( ))Tj} (4.16)

Using Eqgs (4.11), (4.13), (4.15) and (4.16) one then can obtain time-dependent
equations for the unnormalized NGSO's v

Ea PR S VI

Note that the time-dependent version of the @mnstraints of Eq. (3.24)
r
h(v(t) = 3 (B -N =0
1=1

hy (v(t) =y, (1) ~1<0 419

hy (v(t) = (vi(t)|v;(t) =0 i # ]

need to be maintained, which necesstates the use of time-dependent Lagrange
parametersin a modified evolution equation based on Eq. (4.17).




Again we paint out the rather remarkable fact that the coupled Egs. (4.17) are
exact and are euivalent to the full HEM if no ather congtraints, other than those
of Eq. (4.18), are placed on v , H nor 8 . These mupled equations describe

evolution pathsin 3¢* = L,(Y) and thelocal potentias %—g; and g—i act as
time dependent operators mapping H* — 3*. The arvature tensor & (v) can

be ohtained either from the expresson in Eq. (4.14) or from Eq. (4.8) by using
the mordinate transformation Eq. (4.11) that introduces matrix elements of the
operator defined by the kernel

SN - S ST S J (R
ny)= '{@(y') &y) 50y @(y)}' (A1 (e)

between NGSO's {v;(t)1<i<r}.

(4.19
p=p

Thelocal potential %—g; can be expanded in terms of the mmponent

potentials Eq. (3.16), now considered astime dependent, leadingto atime
dependent exchange-correlation potential

Fc(plt) _ 5 {Tr {(i}q(p(t))g(p(t)f}— Fc(p(t))} (4.20)

o o Mo
where the path Q. (po(t)) is defined by Eq. (4.3).

4.4 Other Forms of Time-Dependent Density Functional Theory

Time-Dependent Density Functional theory (TDDFT) has been
considered with increasing interest sincethe late 1970's and many papers have
been published on the subjed. The treaments presented by Runge and Gross
(36) and Grossand Kohn (37) are widdly cited in the discusson of the evolution
of pure gates. The evolution of mixed states has been considered by Rajagopal
et a (38), but that treatment differs in many aspeds from the form given here.

In essentially al of the prior formulations of TDDFT a complex
Lagrangian is used, which would amount to using the full expedation valuein
Eq. (2.9), not just thereal part asin our presentation. The form we use is natural
for conservative systems and, if not invoked explicitly at the outset, emergesin
some fashion when considering such systems. A discusson of the different
forms of Frenkel’ svariational principle, although not in the mntext of DFT, can
be found in (39).

Anocther placewhere we diverge from other developments of TDDFT is
in the use of the metric term Eq. (2.9). These terms arisein a non-trivial manner



asthe pathsQ.(p) are manifestly nonlinear functionals of p and thus have

significant affeds on the evolution of the density. Regarding the Time-
Dependent KS form of the theory as used by e.g. Theilhaber (40), it has been
suggested (6) that the metric terms should cancd asin TDHF. However we do
not concur with this suggestion as the overlap functional that appeasin the
Lagrangian that produces the one-particle ajuations depends on the paths

DN (p),Q(p)in 31(3{N)and 32(9{N)r&spectively, not on independent

particle paths. Independent particle paths are determined by these equationsvia
the auxiliary KS single determinantal state, but it is not those auxiliary states
that appea in the Lagrangian nor determine the generalized phase space metric.
Our form of TDK'S equations would modify Egs. (17)-(18) to refer to anly N
one-particle functions, (thus each function must be normalized to 1), and wsethe

kinetic and XC functionals Ts(p) and Fyc s(p) from Eq. (3.35) to generate the
potentialsin the evolution equations.

One oould view the ocaurrence of the metric termsin the equations of
motion as an annoying complication, but we hold a more positi ve view. First
they asaure that whatever the choice of parametersto be used as dynamicd
variables, that choicewill not introduce unphysical artifacts. Second, the metric
terms are another component of the theory with potential for providing guiding
principles for development of XC models. Those terms also al ow the
mathematicd origin of physical affedsto be assgned.

The mixed state TDDFT of Rajagopal et a (38) differs from our
formulation in the aspeds mentioned above and in the nature of the operator
space where the supervectors reside. A particularly notable diginction isin the

use of the factorization D = QQ' of the state density operator that leads to

unconstrained variation over the space of Hil bert-Schmidt operators, rather than
to a constrained variation of the space of Trace-Class operators.

For areview of TDDFT the reader should consult (36) and Gorling
(42). Inthelatter work TDKSisdeveloped and afairly exhaustive li st of
TDDFT referencesisgiven.

4.5 Time-Independent NGSO Equations from Time-Dependent Theory

The aitical points of the equivalent classcal Hamiltonian & occur at
stationary state energies of the quantum Hamiltonian H and correspond to
stationary states in bath the quantum and generalized classcal pictures. These
points are characterized by the mnstrained generalized eigenvalue ajuation
obtained by setting thetime variation to zeroin Eq. (4.17)



v, 1 () 38(v)
E—O—%E i &j (V){ £ —&(v) 30 }Vj
S (4.21)
. {5{1{(v)_8(v)58(v)}vj —0 1< j<r
o o

The ground state energy corresponds to the lowest value of € that satisfies Eq.
(4.21) in a self-consistent manner. The variables v belong to the nonlinear
manifold defined by the mnsraints expressed in Eq. (3.24). Ofteniit is posshle
tofind intrindgc coardinates for this manifold and convert the problem into an
unconstrained ane. Naticein particular that the N-particle state energy, €,
appeas explicitly in Eq. (4.21), thusthis equation can be used to determine the
ground state energy, which isthe lowest self consistent roat of Eq. (4.21) or
excited state energies given by higher salf consistent roats. Techniques
commonly used in geometry optimization to oltain saddle points could used be
effedively in thislatter context.

5. APPROXIMATIONS

5.1 Model Hamiltonians

In the preceding sedions we have introduced effective one-particle
equations, bath time-dependent and time independent, for one-particle functions
that determine the density throughthe expansion

p(t,y) = Z\4<y|Vi ONvi(t)]y): 1=sM<r (5.2)
1<i<

The time-independent case wrresponds to fixed timet=0. The only constraints

on this expansion are that the Hil bert space norm of the orthogonal functions

{v; } should be lessthan or equal to ane, if the functions are to beinterpreted as

one-particle states and lessthan or equal to N otherwise, and the integral of p
over space and spin variables $ould equal the number of particles. The dfedive
one-particle Hamiltonian that determines these functionsin Egs. (3.29) and
(4.21) in genera depends on the density and its derivatives and is composed of
terms that make up the Hohenberg-Kohn energy functional. The equations we
have displayed are exact and lead to the ecact solutions of the quantum
medhanical equations. However finding exact solutionsisnot posshlein
general as (a) the XC potentia termsis not known, (b) the metric tensor isnot
known in the time dependent case, and (¢) it is not feasible to solve the
equations if the dimension of the space of functionsisinfinite axd M = (i.e
the standard form of the eguationsthat we have presented).

Approximations thus must be introduced that involve modeling bath
the XC potential and the metric tensor, and a truncation of the spacewithin



which to choose the unknown functions {v; } to finitedimension r <. The
modeling is based on the restricted ansatz chosen for the form of states used to
determine paths that approximate D. (p), D(p) and D#N(Dl). It can be @rried

out, for example, by postulating and fitting functional formsinvolving the
density, its derivatives and fitting parameters to match the properties of high
quality Cl calculations. If the expansion size M # r then in analogy to the KS
case theform of the exact potentials will be different and thus the chosen
functional formsin the modeli ng/fitting procedure will have different properties.

Traditionally the expansion Eq. (5.1) used in the KS procedure has
been in terms of % red functions of spacevariables only. In order to al ow some

spin-polarized solutions thistreament is extended to allow N red space
functions half associated with alpha spin and helf with beta spin. Generalizations
of the KS procedure would allow functions of a more general form and
expansions with a greaer number of functionsthan N in Eq. (5.1). Such
generalizations would be based on auxiliary states other than ared restricted
single determinant. Approximate forms of these generali zed KS equations
would correspond to the approximate forms of the time independent one-particle
equations discussed in thisarticlein the asewhen M #r . Moredetail isfound
in (42).

Approximate time-dependent KS formulations differ more sharply from
approximations to aur time-dependent formulation than do the time-independent
ones asthey do not explicitly refer to atime-dependent metric term. In time-
dependent K S, these terms either are added impli citly to the gproximate XC
potential or combined with other potentias.

5.2 Symmetry Constraints

All of the gproximation procedures noted above lead to density-
dependent eff ective one-particle Hamiltonians. In such approximation schemes
it is posshleto oltain better results by relaxing some physical symmetry
congtraints on the form of approximate solutionsi.e. allowing symmetry-broken
solutions. Thetypes of symmetry-broken solutionsthat are posshble by relaxing
spin and time-reversal symmetry have been discussd at length in (42), where
we applied Fukutomes' analysis of the Hartree- Fock solutionsto DFT. An
aternative perspedive on that same analysisis that, if more general solutions
were included in the formulation of an approximate Hamilt onian, the resulting
solutions would not be symmetry-broken. In short, an approximate Hamilt onian
which does not have the generality discussed in the precaling subsedion may
yield an energeticdly favorable solution by breaking symmetry. Such symmetry
breaking can be mnstrued as areintroduction of the missng flexibility
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APPENDIX A: GLOSSARY OF MATHEMATICAL

SYMBOLS

Sn The onvex set of N-particle states

Sx(p) The set of N-particle states that produce the same density
p




Sn1 The of First Order Reduced Density Operators (FORDO's)

Sn1(p) The set of FORDO's that producethe same density p

Snup(P) The set of Independent Particle FORDO's that producethe
same density p

Snp The set of p-particle Trace Classoperators that are N-
Representable.

B (3{ N ) The space of trace dassoperators acting in the Hil bert

' space H N

gcN The Hil bert space of pure N-particle fermion states. It isan
N fold antisymmetric tensor product of the Hil bert space of
pure one-particle states.

pN N-particle state operator, if it isnot a projecor onto a 1D
subspaceit represents a mixed N-particle state

32(3{N) The Hil bert space of Hil bert Schmidt operators acting in
K N

H The Hamiltonian super operator (the Hamilt onian
represented as an operator actingon Hil bert Schmidt
operators

() Inner product in 32(0{'“)

M Submanifold (in general nonlinea) of operatorsin
B,(3M).

8(x) Equivalent classcal Hamiltonian defined on M ; x isa
coordinate system on M i.e. the points of M are states and
the mordinates of these pointsare x.

8(x) Normalization function of statesin M

) Poisson Brackets defined on tangent spaces of M

& The sympledic metric tensor defined an the tangent spaces
of M

Fl Superoperator acting on Hil bert-Schmidt operators

o producing their time derivative.

Lagrangians

Combinatoria coefficient "r choose N

oY) Charge density as afunction of space and spin variables
(r.0)
Y R®xC?

Linea normed space of absolutely integrable complex




valued functions of 3 real and 2 complex variables.
Arbitrary elements are denoted hy ¢ and densities by p

Hil bert space of square integrable complex valued functions
of 3real and 2 complex variables.

Linea map from the space of bounded N-particle operators
to the space of absolutely integrable aomplex valued
functions of the variablesy.

Contraction map from N-particle Trace ClassOperatorsto p
particle Trace Classoperators.

Continuous Fermi field annihilation operator that depends
on the space-spin variabley.

Discrete Fermi field annihilation and creation operators

Linea spaceof equivalence dasses of TraceClass
operators. The operators are ejuivalent if there difference

liesin thekernd of =3,

Pin Positi ve cone of space-spin densities derived from N-
particle states.

Ey Linea energy functional based on the Hamiltonian H, it
acts on the space of N-particle Trace Classoperators.

Er Linea energy functional based on the Kinetic Energy
operator.

Exc Linea energy functional based on the XC terms.

Fy Nonlinea energy functional based on the Hamiltonian H, it
acts on the space of absolutely integrable complex valued
functions of the variablesyy.

Oy Nonlinea energy functional based on the Hamiltonian H, it
acts on the space of one-particleTrace Class operators.

DN (0) Path of N-particle states, each state on the path corresponds
to adensity p and isthe minimum energy state for that
density.

D#N ( Dl) Path _of N-particle states, each state on the path corresponds
to afixed FORDO and isthe minimum energy state for that
FORDO.

Di( P) Path of FORDO's, each FORDO on the path corresponds to
adensity p and isthe FORDO that correspondsto the
minimum energy state for that density.

D.'go (p) Paths of 1P N-particle states and the unique FORDO's that
correspond to these states.

and Dip (p)

Q(p)

Path of Hilbert Schmidt operators




[Z]N Equivalence dasss of N-particle Trace Classoperators that
all map to the same function .

[(]l Equivalence dasss of 1 particle Trace Classoperators that
all map to the same function

[X] N The set of N-particle Trace Classoperators that contract to
the one-particle operator X.

<p>N Set of N-particle Hil bert-Schmidt operators that produce N-
particle states associated with the same space-spin density.

C The omplex numbers

Cs Coherent State

FORDO Firg Order Reduced density Operator

HK Hohenberg-Kohn

K&S Kramer and Saraceno

KS Kohn-Sham

NGSO Natural Generd Spin Orbitals

R The real numbers

TDHF Time-Dependent Hartree Fock

TDVP Time-Dependent Variational Principle

APPENDIX B: SPACES OF OPERATORS

Bounded Operators B(H)

The set of bounded operators acting in an Hil bert space H form a
normed linea space Thenorm is given by the bound on the operator
(W)

X = ; OK Bl
IXI=supeo gy ¥ (B1)

Trace ClassOperators B, (H)

The set of trace dassoperators form a subset of the set of bounded
operators, defined by

1
31(3{):{X;Tr{(XTX)2}<oo} (B2
Thisset dso forms anormed linea spacewith norm defined by

X, :Tr{(XTX)%} (B3)




Hil bert-Schmidt Operators B,(3)

The Hilbert Schmidt operators are another subset of the set of Bounded
Operators, defined by

32(9{):{X; TI’{XTX}<00} (B4)
This set forms a Hil bert spacewith an inner product defined by

(XIY)= Tr{xTY} (B5)
which defines the Hil bert-Schmidt norm

X, = (XIX)? (©6)

The set of Trace Classoperators and Hil bert-Schmidt operators are not in
general contained in each other, but they are mnneded in the foll owing manner

X OB,(H) O XX OB (K) (B7)
If the dimension of JH isfiniteall of these spaces of operatorsareidenticd.

APPENDIX C: INVARIANCE GROUPS
If X isan operator then itsinvariance group Inv(X) is defined to be
Inv(X)={u; uxu'=x; uTu =uu =1} (C1)
If visavedor then itsinvariance group Inv(v) is defined by
Inv(v)={U; Uv=v; U'U =UU" = I} (C2)



