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1. Dedication and Introduction

Prof. Reszo Gaspar was among the pionee's, along with Dirac, Thomas, Fermi,
and Slater, of the part of many-Fermion theory that has beame known as Density
Functional Theory sincethe work of Hohenberg, Kohn, and Sham. We ae honored to
have the opportunity to present a portion of our work on formal Density Functional
Theory in a volume dedicaed to reamgnizing Prof. Gaspar’s contributions.

In two recent papers[1,2] we have presented significant portions of an effort to
provide a omprehensive mathematical basis for Density Functional Theory. Theaim is
to be both formally sound and to provide astructural framework for the development of
improved approximations. The eailier paper addressed the relationship between
symmetry bregking in Kohn-Sham solutions and the essential structure of the KS orbitals
that emerges from general classification by spin-rotation and time-reversal symmetries.
The later paper summarized a reformulation of the anstrained-search construction of
time-independent Hohenberg-Kohn functionals and their variational properties and, on
that groundwork, presented a new formulation of time-dependent DFT based on the time-
dependent variational principle. New and/or improved results for several major aspects
of the time-independent problem were stated there without proof. Here we aldressthose
issues. We pay particular attention to rigorous definition of the functionals (including
caeful distinctions among them that often seem to be ignored), rigorous conditions for
the existence of well-defined functional derivatives, conditions under which a density is
asociated with a one body potential (V-representability), and formulation of various
kinds of one-particle functional equations (including but not limited to Kohn-Sham
equations).

2. Mathematical Preliminaries

This dion summarizes mathematical structuresthat are pertinent to our analysis
of various energy functionals that can be used in DFT. Note to the reader: the notation, in
gpite of our best efforts, isat points quiteintricate. Itis simmarized in Appendix A.



2.1 Operatorsand States

The objedive of DFT may be stated succinctly asthe daraderization of quantum
states by densities. To make full use of the representation of quantum states by density
operators, we will be focusing upon two specific subsets of the set of all Bounded
Operators, B(H), acting in a Hilbert space . The two subsets are the set of Trace

ClassOperators, B,(3), and the set of Hilbert-Schmidt Operators B,(H).

The set of bounded operatorsis rich in mathematical relationships between its
elements. In particular it isanormed linear spacewith norm, for ead operator
Z OB(H), defined by

<¢’|Zl/—’>_ OH 2.1
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Its elements can be multiplied, thus giving it an algebraic structure. This multiplicaionis
a ontinuous operation with resped to the normin Eq.(2.1), asisthe aljoint operation,
and together they have the property

lz'z|=1zF =" 2.2)
Algebras with this property are alled C-algebras[3].

|2]}=sup
Y

The subset of traceclass operators
B, () :{X;Tr{(XTX)%} <o, X DB(J{)} 2.3)
with its norm defined as
X[, =7r{(x"x)’} (2.4)

is not a C'-algebra, but only a normed «-algebra & Eq. (2.2) is not satisfied for al of its
elements. This algebra is espedally significant as it contains the set of quantum states,
both mixed (ensemble) and pure, asciated with the Hilbert spaceJ . Positive
normali zed trace tassoperators, D, cdled density operators represent these states

§={D;D=0,Tr(D)=1} (2.5)
The set of states § is convex i.e. ZCIiDi 08; when ZGi =land a,20.

Asthe density operators are positive they always can be expressed as

D=QQ' (2.6)
where Q is a Hilbert-Schmidt operator, an important relationship that will be used
extensively in the material that follows.

The Hilbert-Schmidt operators comprise another subset of the set of Bounded
Operators defined by

B,(3) ={Q Tr{Q'Q} <w,QUB(3)] (2.9)
They actually form a Hilbert spacewith an inner product defined by
(QIQ)=Tr{Q'Q,} (29

which defines the Hil bert-Schmidt norm



1, = (QIQ)? (2.10)
Like the TraceClassoperators the Hil bert-Schmidt operators also form a normed «-
algebra.

In general, the sets of TraceClassoperators and Hilbert-Schmidt operators are not
contained in each other, but are conneded in the following manner

Q.Q DBZ(U{) U QleT DBl(H)
XOB(H)D X=QQ); Q.Q DB,(K)

It isthe latter property that justifies EQ. (2.6). If the dimension of H is finite all of these
spaces of operators are identical.

(2.11)

2.2 Densities

The relevant Hilbert spaces, {9{ N } , describe the pure states of N-eledron systems

and are defined as N-fold antisymmetric tensor products of a Hilbert spaceof one-particle
states H*, which we will consider to be represented by square integral functions, L(Y),

of charge-spin variables y =(r,&); Y ={y =(r,&);r OR®, £0C?}. Inthe original
formulation of DFT the objed of paramount interest was the eledron charge
density, p(r ), afunction of position only. However it has become increasingly evident

that generali zations involving spin are more flexible and powerful tools with which to
construct functionals and describe the behavior of electronic systems. These extensions
take the form of Spin-Polarized DFT [4] in which atwo-component spacedensity is

considered (pa (r),py(r )) one mmponent associated with alpha-alpha spin interadtions
and one with beta-beta spin interadions, and the more general full spin DFT [5] that
involves a three.component spacedensity (pa (r):Pas(r), pg(r )) that also includes alpha-

beta spin interadions. Though the threecomponent form is more general it involves a
spatial density p,,(r)that is not a positive function.

In order to recover a general spin description, equivalent to spin DFT, while
maintaining positivity we consider the full charge - spin number density, y(y), afunction
of threespace ad two spin variables. The linea map =3, that produces the full number
density is a cntraction map from the spaceof N-particle trace tassoperatorsinto
Ll(R3 X GZ) the spaceof complex-valued absolute integrable functions of charge-spin

variables
ZNIB(H") - L(R®xC?) = Ly(Y) (212
This map is defined in terms of Fermion field operators by
2(y)= 0 (X)(y) = Tr{@" (y)e(y) X} DL(Y). (213
The field operators used in this definition are given by
o(y)= 3 .(v)a (2.14)
1<i<r



in terms of the discrete field operators, {q ,a,.T} (overbars denote complex conjugation), in

turn these ae defined using abasis of 3* comprised of one-particle functions of space -
spin variables {¢i 1< < r} and their adtion on the vacuum vedor |¢)

al|9)=|9.) 219
The field operators stisfy the fermion anti-commutation relationships

[®(y), @'(y)], =(y -V
[a.a], =5,

The First Order Reduced Density Operator (FORDO), D', which is defined in asimilar
fashion also can be used to define the density (Appendix B).

(2.16)

The kernel of the linea map =}, isalinea subspaceof Bl(U{ N) , Which we can

use to define an equivalencerelationship on B,(H" ) by

X~Y = X=-YOKer{Z},} = = (X)==3(Y)=¢ (2.17)
where the double arow indicaes equivalent statements. We denote these eguivalence
clasesby [{],, and note that

it 3 o =landX; O[¢] Oi then % a; X; O[], (2.18)

These equivalence classes are the esential tool for identifying states with densities.

The map =3, , when restricted to the cnvex set of N-particle states, 8, , has
values in the onvex set, P, of positive functionsinL,(Y) that are normalized to the
value N

P ={v;v(y)20,Jy(y)dy = N} (219
Harriman [6] has $own that this map is"onto" i.e. any element of P,,, comes from at
least one element of §. Note that this property does not rule out the posshbility that an
element of P, can also come from operatorsnat in 8 . This"onto" property should be

compared to the cae that arises in the N-representability problem [7]. Init, not every
positive two-particle operator comes from a state in 8, so the @rresponding contradion

map does nat have the “onto” property.

The equivalence classes [Z ]N have anatural indexing by the functions {¢} and
can be expanded about areference representative point
[€], = X¢ +Ker{Z=3 1 X O[], (2.20)

that is, given any single operator that maps to a spedfied density, all othersthat do so are
determined by addition of elements of the kernel of the mntraction map to this operator.

If we restrict attention to y 0%, then each [y],, containsa mnvex set of states, 8 (y)
belongingto §,



8u(v) =[]y n 8 (2.21)
It isimportant to emphasize ayain that, even for densities y , the equivalenceclass [y]N

can contain operatorsthat are not positivei.e. are not states, as well as both pure and
ensemble states.

The elements of the mnvex set 8 (y) also can be expanded about areference
representative state
Su(y)=DY +8=}(y.D) ) DX O8(y) (2.22)

where 8=} (y)isa onvex set, contained in Ker{=}, }, of state differences

{DN -DY; D DSN(y)}that depend explicitlyon yand D .

2.3 Fiber Bundles

Though not exploited extensively in this paper, except for helping to visualize the
mathematical connedions in a more mncrete fashion as shown in Figure 1, the set

{y,SN (y)} can be described mathematically in a convenient fashion as a fiber bundle [8],
with fibers{8,(y)} and base space %, , which we will denote by D" .

() i

ngN

Figure 1: Thevertical linesare thefibers SN(y) ; thecurveisapath of states
(fiber bundle vocabulary: cross-section); thethick horizontal lineisthe base
space, in our case densities P, . The complete collection of vertical linesis, in
our case, the set of states 8, .

The best known example of a fiber bundle used in physical applications isthat of
the set of tangent spaces (the fibers) associated with a nonlinear manifold (the base space
[9]. Inthat case, the fiber bundle is adually a vector bundle & the fibers are veaor

spaces, such is not the cae here, however, asthe fibers are the @mnvex sets 8, (y) which

are not vedor spaces. A cross £dion isamap from the base to afiber. In the present
case

X:Py - 8

2.23
X(y)=D" O8(y) (223



which associates a specific density with one specific operator in 8 (y). Every different
asciation determines adifferent X. We cll these aoss edions state pathsin § . In
the example of tangent spaces the aosssedions are vector fields.

3. Energy Functional Defined on Paths

The relationship between N-particle states, in which we include mixed states,
represented by N-particle operators and the charge-spin density, y(y), as defined in Eq.

(2.13), isnot 1-1. Thisfad isa central issue in the rigorous formulation of DFT. The
power and simplicity of DFT arise from the dharaderization of an N-Fermion system by a
real positive semi-definite function (density) of asingle 3D spatial variable and one 2D
complex spin variable, but that charaderization rests on the subtle detail s of just how the
density determines a N-particle state.

In order to develop a framework in which to treat these topics rigoroudy for both
time-dependent and independent systems, we have, as remarked in the Introduction,
revisited the constrained search of Levy [10,11] to generate a well-defined energy
functional of the density. As shown in detail in what follows, we then do a constrained
optimization analysis of the problem as described, for example, by Hestenes [12]. These
techniques provide aspecification of paths (of N-particle density operators) that are
defined in N-particle operator spacesuch that they are labeled by densitiesina 1-1
fashion. The expedation of the Hamiltonian with resped to N-particle states on those
paths then becomes a well defined functional of the density y(y) and the ground state

energy isthe minimum value of this functional. We remark that this treatment beas sme
resemblance Kryachko and Ludefia' s (KL) use of “orbits’[13]. It differsintwo esential,
specific ways: (a) The paths we use ae determined by optimization criteria that guarantee
the resulting functionals have well-defined functional derivatives irrespedive of the
topology of the density. KL, in contrast, identify orbits by employing the Bader density
surface citerion[14]. Those orbits therefore aetied explicitly to the moleaular point
group symmetry but without any explicit criteria for existence of the required derivatives.
Note dso that moleaular structure and bonding often involve changes in the point group
symmetry, so the KL orbits intertwine chemicd and mathematical properties that might
better be left apart. (b) The analysis we use charaderizes the states by the general charge-
gpacedensity y , not the charge density p, apoint already mentioned that is treated in

more detail below.

3.1 Energy Functionals
The energy functional defined by a Hamiltonian, H, given by

E .8 - R
E,(D")=Tr{HD"}
does not have aunique value on a given convex set 8, (y) as defined in Eq.(2.21), as

(3.1)

many different D" 's may give the same y while producing different values E,, (D N ) :
ThusE,, doesnot leal to awell-defined function on the spaceof equivalence classes of



density operators, a spacewhose dements are in 1-1 correspondence with densities. To
obtain an energy functional that is well defined, we use the mnstrained search logic and
define another functional in terms of the dharge-spin density as

Fuly)= Min E.(D")=E,(D"(y)) (32)

where D" (y) isthe minimizer of E,, inthe set 8(y). Notethat the cae of anon-unique

minimizer is excluded; seeSavin [15] for arelated dscusson. Minimization in Eq. (3.2)
involves threetypes of constraints, normalizaion, positivity and fixed density.
Normalization and positivity can be handled by the fadorization [recll Eq. (2.6)]

QQ' N

=——=—= —: QUB,|H (3.3

Tr{QQT} 2( )
which leadsto the energy functional form

Tr{HQQ'}
F.(y)= Min————== MinE,(Q.Q")=E Q! 3.4
()= Min g - M E(QQ)=EQMAK) 39
Thefirst Min isover all QQ' that correspond to ¥, i.e. that yield that density or a
constant multiplier of it. This correspondencealso can be expressed by defining the set,
(y),.of feasible Q's by a constraint function, g, for a fixed y as

g:Bz(HN) - fPlN
9(Q.Q".y) =0 (3.5)

g(Q,Q*,y)=:‘1N[%]—y

N

3.2Minimization

The minimization in Eq. (3.4) subjed to Eg. (3.5) can be caried out via a
Lagrangian function

£(Q,.Q",A,y)=E,(QQ") jA 9(Q.Q".y.y)dy (3.6)

Its stationary points
0oL4Q,Q"A.,y)=0,L(Q,Q",A. y) =

Q| (3.7)
Y 1r{QQl}

determine the mnstrained extrema of E,, (Q, QT) . (For the ground state obviously a

minimum is required.) By considering the sensitivity of the minimizer Q.(y) to variations
in y and chedking that certain conditions on the first and second derivatives of
£(Q.Q",A,y), are satisfied (which we examine below), Hestenes[12] showed that one

can define a path of solutions, Q.(y), parameterized by y, not just a set of solutions



indexal byy . These paths in the parameter space BZ(H{ N ) determine density operator

Q(y)Q'(y)
Tr{Q(v)Q ()}

paths D."(y) = in 8§ OB (H").

The energy functional F,,(y)developed in Eq. (3.4) now can be viewed asthe
energy functional E,, redtricted to such pathsi.e.

Fu(y) = Ea(Q(r).Q(y)) = Eu(D"(y)) (38)
A further consequence of the Hestenes analysis is that one can define aL agrange
parameter functional A.(y) by setting A.(y)(y) = A.(y)for each y and its assciated A.
obtained from solution of Eq. (3.7), and that this functional can ke identified rigorously

with the functional derivative 5;’/* of F,(y) alongthe path Q.(y) . Notethat the energy is
a 1-1 functional of the density on this path and simultaneously that the functional
derivative is defined on this particular path. It is possible define other pathsin 8, on
which the energy isalso a 1-1 functional, but on those other paths the following crucial
fad will not be true

E, = Min {F.(y)} (39)
where Ey isthe ground sate energy of the system.

The parameterization of state density operator paths by the pathsQ.(y), i.e.

vy - QR(Y)
D* y -
V) Tr{Q(v)Q'(v)}
between parameters Q.(y) and states. D*N(;/) isnot unique. The parameterizaion can be

made non-redundant in a straightforward manner. For the purposes of this paper,
however, the redundant parameterization is more cnvenient.

, ingeneral isredundant. That is, in general the aciation

The eplicit form of the functional Fy is at this point unknown, hence in pradica
applications hasto be gproximated. To facilitate aeaion of such approximations one
decmposes Fy into a sum of other functionals that focuses essentially all the unknowns
into one mmponent, the exchange-correlation functional, Fxc.

Fu (V) = Fe(y) + Fxe (V) + Fs(¥) + Fau (V) + Fea (V) + F-(¥) (3.10)
(with subscripts C, XC, S eN, Ext, and T denoting Coulomb, exchange-correlation, spin,
eledron-nuclea attraction, external, and kinetic energies respedively). We emphasize
that Eq. (3.10) is nat the Kohn-Sham decomposition familiar in prior presentations of
DFT, because thereis no KS auxiliary system involved in this decomposition. From the
construction presented above it is clea that in order to maintain consistency and to define
functional derivatives properly all the functionalsin Eg. (3.10) must be defined on the
same path in ®"; recll Figure 1. These two observations lead to what may be unfamiliar
definitions for the kinetic energy functional and the exchange-correlation functional, as
follows:



2] v

Fe(y)= lj—y(y)y(y') dydy’

Fey) = Tr{_% > 0D (y)} =Tr{TD(y)} = E+(D"(y))

Fs(y) - Tr{HSD*N (y)} = ES(D*N (y))

Fec(y) = Tr{[ z E]D*N (y)} -F.(y)= Tr{VlzD*N (y)} ~F.(y)= Exc(D*N (y)) (3.11)

1= <7 B

Fau(Y) = -J y(y)% ﬁdy

Fee(v) = J y(y)y Ui(y)dy

(The Hg contribution isto alow for an explicitly spin-dependent Hamiltonian.) A
particular point to observe that, unlike the familiar KS construction, this exchange-
correlation functional does not involve the kinetic energy. From the perspedive of the
DFT literature, Egs. (3.10) and (3.11) are aformulation of the Hohenberg-Kohn
functional that is constructed to ensure that the functional derivatives required for
variational minimizaion adually exist.

One @n regroup the functionalsin (3.11) into auniversal electronic functional
that describes the internal energetics of the eledrons at prescribed y,

F(v)=Fc(y)+ F(y) + Fs(y) + Fic(y)

(312
= E¢(D(y)) + Er (D" () + Es(DX(v)) + Exc(D(v) = E(D(v))

and one describing the effects of the environment upon the dedrons

K (y) = Fa (y) +Fey (y) (3.13
where the total single particle potential V is defined as
z
V(y)=V(r,&) =V +V,, = z—”r _*;? | =S Ui(y) (3.14)
I i u 1

It describes the interadion with the nuclear framework and ather external fields and also
could have anon-trivial local spin dependence (It should be noted that it is possible,
though unconventional, to formulate interadions with external magnetic fields in this
manner. Note dso that in many DFT papers, the “external” potential isjust V)

A very significant property of F,(y) isthat it isnat defined on apath in
8\ (v)but directly on elements of ?,, leading to the observation that E and E,, have the
same minimizer inthe set 8 (y)i.e.



E(D"(y))= Min E(D") (3.15

E.(D"(y))= Min E,(D")=E(D"(y))-[y(yN(y)dy (3.16)

This property isnot shared byE,, with E;, Eg and E,. separately, thus the kinetic energy
functional E; minimizer D;'(y) given by

E.(Dr'(v))= Min E.(D") (3.17)

DN By (y)
is not the same & the minimizer for the universal electronic energy functional E

E(D(y)= ,Min {Tr{(T+Vy, + H)D" }} = Tr{(T +V;, + H) D (1)}

2 Tr{(T +V,, + Hg) D' (y)}

(3.18)

3.3 Conditionsfor Existence of Paths and Derivatives

As dated in Eq. (3.7), astationary point, Q.(y), for the minimization problem Eq.
(3.4) exists when one can find a Lagrange parameter functionA.(y) such that

Vo£(Q Q1A 7)=VoE(Q Q)+ [4.(Y)V-g(Q. Q" 7)(y)dy =0
Y (3.19

andg(Q.Q,7)=0;, forP=Qor Q'
The energy gradientsin Eq. (3.19) can be viewed asreal valued linear maps

O0pEq(Q.QT B, (H") - R, P=QorQ (3.20)
which can be cmbined to form the total functional gradient UE,, that produces the first
order variation &, in E,, with resped to the operators Q,Q" at the minimizing point
Q.Q

&, = 0E,(Q.Q)(P) = DoE4(Q.Q)(P) + Oy, Ex (Q.QT)(PY) (3.21)
The ongtraint gradientsin Eg. (3.19) can be viewed as linear maps and the mmponents
0,9(Q.Q',y) can be cmbined to form the total constraint gradient Cg(Q.,Q”,y) which
can viewed as the linear map
Og(Q., Q1Y) B, (H") — Ly(Y)
Og(Q,Q",¥)(P) = 0,0(Q.,Q",¥)(P) + 0, 9(Q.Q",y)(P")

One @n conceptualize these maps more ancretely via an operator basis

22)

{| W ><LPJ. |} inB,(H"). Letting the dimension of 3{*ber, we n expand the

10



) )
operatorsQ = z Q,j|LPi><LPj | and Q' = z Q¥ ><LPJ. | (again the overbars denote

iJ=1 i]=1

complex conjugation) and expressthe energy gradient as

oE(Q.,Q") E(Q.,Q) E(Q.,Q)  EQ.Q)

DE(Q.,Q") = e : ... — (3.23)
oQ,, @[L)[L) Q,, 5’Q[N)[N)
and the constraint gradient as
Og(Q.,Q"y)(Y)
_| %(Q.Q") a9(Q..Q") ®(Q.Q') a9(Q..Q") (3.24)
| T, W W) 9Qy, - Q) Y

)

Noting the form of the cnstraint function g, Eg. (3.5), we seethat

o= [ QQ!
a(Q.Q"y) "\ Tr{QQ’} =
y)= y) R =QorQ (329
0"13“_ ( ) dPIJ ( ) | ) |
leadingto Og(Q.,Q",y) = 0=} _QQ" , which explicitly does not depend on y .
Tr{Q.Q'}

The central issue & this point isto determine conditions for existence of solution

paths {Q.(y),A.(y)} . i.e. continuous maps (defined with respect to the norms of
By(H")and L(Y))

Q*:fP].N - Bl(g{N)

(3.26)
A fPlN - Ll(Y)

not just aset of optimal values {D." (y),A.(y);y 0%, }. By consideration of the implicit
function theorem, Hestenes [12] has shown that sufficient conditions are:

l. The map Og(Q.,Q’,y)is nonsingular. This condition is equivalent

11



E(QR(Y)
0 N( ;Q) ( )) 1gi,js£|:|) being linearly independent as functions
i

inL,(Y), (recdl Eqg. (35): g(Q.y)==3(QQ")-vy).
. ThemapO?L(Q,Q",A.,y):B,(H") - B,(H") isnonsingular. This condition is
equivalent to the Hessian matrix

°L(Q..Q",A..y)
R, OB,

r —
A<i,j,k,l < [N} P =Q ,Q,J} being nonsingular.

The formal resemblance of these anditions to those for a stable mnstrained minimum
energy path on a multi-dimensional potential energy surface is clea. These two sets of
conditions can be mmpressed into one by demanding that the auigmented Hessian defined

as

8(Q.Q'y)- [mm(gg’ )) -DQ(Q*(;Q*,V)t] (327

be nonsingular.

Along peths on which these mnditions are satisfied, the Lagrangian £ hasthe
explicit dependence

£(D"(y).A.(v)) = E )+ [2- ()9 ())dy =E, (D" () (329

where ayain we have utilized the relationships g( M(y))==%(D"(y)) -y =0aong a

path and D" (y) = Q.(y)Q!(y) . Differentiating Eq. (3.28) with respect to y along a path,
one obtains

st _ (D7) J‘ 5. (1Y)
orly) o) Sr(y)
This result follows from (3.19) by appeal to the implicit function theorem to give apath
parameterized by ¥, then confining the derivative of the Lagrangian to that path and
oL 9L oD
Sy oDN Sy
apath yet again and integrating the delta function termin (3.29), one finds that the

derivative of the energy functional along a path is equal to the Lagrange parameter
function along that path i.e.

a(DM(M))Y)- 4 ((y))S(y-y)ldy=0  (3.29)

using the chain rule — = 0. By the use of the mnstraint relationship along

12



Ay = BP0 Fulr)
or(y) 5y(y)
where the second equality follows from Eq. (3.8). Eq. (3.30) showsthat the Lagrange

parameter function is adually a measure of the sensitivity of the energy functional to
changesin itsargument y .

(3.30)

3.4 Evaluation of Derivatives

One @n examine the cnditions just given in more detail by noting that the
energy E,,, contraction map =3, and constraint g are the following functions

H(QQ") _Tr{HQQ} _&,(QQ)
SQ Q*) T{QQ}  Tr{QQ’}
=0 (QQ)y) _ Tr{@'(y)2(y)QQ'}

E.(QQ')=

50.0) 00} (3.31)
by T (Y)e(y)QQ'}
9(Q.Q"7)y)= TrQQ 1Y)
which have gradients
E.(Q.Q")= =+ (0,H(Q.Q")- E,(Q.Q")0,5Q.Q"))
RS =00 032
DP:N(QQ)—S(Q,QT)(DP:N(QQ)() =1(QQ")y)0,8Q.Q"))

Here the gradient functionals evaluated a the point (Q,Q") are themselves linear maps of
the agument X, that is

VoH(Q.Q')(X)=Tr{HXQ'}
VoSQQ')(X)=Tr{XQ'}
Vo= (QQ)| (X)=Tr{@’(v)e(y)xQ'}
X GBZ(U-CN)

The subscript y onthe LHS of the third line of (3.33) isareminder that the value liesin
L,(Y). Inorder to check whether condition | is satisfied at agiven Q.(y), one needsto

ascertain whether
A

and (3.39

(3.33)

13



are sets of linealy independent functionsin L,(Y). Condition Il involves scond
derivatives that have the following form at stationary paints Q.(y)

T
VIZDP'£(Q* 1QJ ,ﬂ* y }/) = Vip»{ Q(QQ*%T))}
! - (3.35)
- o (T HeQ)-€Q.¢ 2 A S.Q) Pl

where we have introduced the unnormalized constraint Lagrangian $) defined by
HQQ")=¢£,(QQ") j AY(ZH(QQANY) -7y TrRQ)dy  (336)

Asthe functions $ and Sare quadratic, their seoond derivatives are eay to
evaluate. First, expand &£, (QQJ)in terms of a matrix representation with respect to the

basis {| W ><LPJ. |} (recall the discusgon just before Eq. (3.23))
€.(QQ)=Tr{HQQ'} = ZQQuTr{H w)(¥, [ ).

_ (3.37)
:ZQ'IQK|Tr{H|\P> k|5 } ZQlJQkIHk|5JI _ZQIJQH 1kij
Similarly one gets
= (QQN)Y)=2.9 leTr{ (y)o(y)|¥, ><\PJ |\P| ><\Pk |}
e (3.39)
= Z QQuTr{®(y)(y)|¥: ) (¥, |6, }
and
Tr{QQ} =Y QQuTr{ ¥ (¥, | ¥ )(. |}
" (3.39)

= ZQU 6|d5ik5jl
ijKi
Then the matrix of seaond derivativesis

[25(QQ")]= [.3 ﬂ [e&) 8(3*)}

A)= JA* y{G(y)-y(y)1}dy (3.40)

01
DZ X *T -
5QQ) [1 )
Here the matrix of derivatives has elements V¢ » 5(QQ'); R,=Q,or Q..and the
matrix G is defined as

Gy (¥)=Tr{@"(y)@(y)| W (¥, 6, } = 74 (¥)5; (3.42)
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The map constructed from {DZPP,L(Q* Q" ALy) PP = Q,QT} thus is singular when at

least one veador
\Y :[Wj , W DG[L)
w

exists such that

[[ ; l;} [19 (,2,7,) 19(/105,7)}_ E, (Q*(y),Qj(y))[(i ;Dv -0 (3.42)

with the density dependence displayed explicitly. In other wordsif E,(Q.(y).Q'(y)) isa
stationary state energy of the aigmented Hamiltonian H + (4. (y)), then the Hessian of

the Lagrangian is singular and the point Q.(y) does nat lie on a path of constrained
minimaof E,,.

In Sedion 3.2 Egs. (3.15) and (3.16) we noted that the functionals E,, and
E have the same @nstrained minimizer Q.(y) , though the Lagrange parameter function
will be different. We can go further to notethat, as H = H, +V , where V, defined in Eq.

(3.14), isalocal external one-body potential, the matrix representation of H in Eq. (3.37)
only differs fromthat of H,by a constant matrix (kegp in mind that thisis for a stipulated

y). Wethus can replace E,, and H in Egs. (3.31) - (3.40) by Eand H, then ascertain
whether the @nditions are satisfied for Q.(y) to lie on a path of solutions for E, again
noting that we have adifferent Lagrange parameter function A. asociated with the

constrained solution Q.(y), and henceﬁ(l) # 9(A.). Using the analogous expression to
Eq. (3.37) onethus can conclude that if E(Q.(y),Q'(y)) isadtationary state energy of
the auigmented Hamiltonian H, + 0(1 (y)) , the point Q. (y) does not lie on a path of
constrained minimaof E . It isinteresting to note that the test potential 19(1) has matrix
elements JX* (Y{Va(Y)—¥(y)d, }3,dy; in short, the difference of all possible densities

Y
with the stipulated one plays a decisive role in determining whether the Lagrange
parameter function is a functional derivative.

3.5 V-Representability

The conditions for the existence of paths described in the precaling sedions are
intimately conneded to the V-representability problem [16]. In fad, as we now shall
show, the use of functionals defined on paths is adually equivalent to restricting attention
to interading V-representable densities and that the conditions for the existence of paths
arein faa V-representability conditions. The V-representabil ity problem isto speafy
conditions that guarantee adensity, y , to be agationary state density for some

15



Hamiltonian H = H, +V , where V is an external potential in the sense of Eq. (3.14) and
H, isasdefined implicitly in Eq. (3.18).

Theorem: A density ' €, isstationary-state V-representableif the
augmented Hessian 8 (defined in Eq. (3.27)) isnonsingular both in a

neighborhood of y”and at y” itself and if E(Q.(y").Q"(y’)) = Ql\{li{] {E(Q, QT)},
SV
where E(Q,Q") =Tr{H,D"} and D" = &TT
Tr{QQ'}
Proof
By assumption, the aigmented Hessian & , Eq. (3.27), isnonsingular both at the

constrained minimizer Q.(y”) and in a neighborhood of that y”. Therefore, one can
identify the Lagrange parameter function A.(y’)with %&l) , [where F(;/)is given by
(3.12); itsargument in the functional derivative indicaesthe evaluation function], define

alocal one-body potential as V(y) = —M , and aHamiltonian H =H, +V . Thenthe

Sy(y)
functional F,(y)= E,(Q(y).Q'(y)) defined in a neighborhood of y follows by simple
adding to F the energy contribution fromV [recd Egs. (3.10), (3.11)]. Immediately
o
oy

= 0 and therefore y” is sationary state representable for V(y) = —i:y(();)) _
7=y

Further if F,(y") < Fy(y) for all other densities associated with the path Q.(y) then y”is
ground gtate V-representable.

4. Variation Principle for States Parameterized by Charge-Spin Densities

In this sedion we gply the onstraint y 0P, via parameterizaion of y by "one

particle functions® (i.e. functions of one spaceand one spin variable) in terms of
guadratic expansions of various ranks. This procedure lealsto one particle variational
equations that determine the ground state density y, and are ejuivalent to the HK
equations. We then contrast these equations to those of Kohn-Sham type that arise from
regrouping of the terms in the energy functional and the introduction of an auxiliary state.
Finally we discussthe implications of using y(y) instead of p(r ), the significance of that
choicefor symmetry breaking, and the use of auxiliary states more general than single
determinants. Some of these issues have been touched upon in our two previous papers,
detail s omitted there aetreated here.

4.1 Parameterization of y

Reall from Eq. (3.10) that for well-defined peths the ground state energy isthe
solution to the minimization problem
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B, = FulYo) = ;\4_;151{ Fa (V)] (4.1)

The onstraint that y 0%, can be handled in analogous fashion to that of D" S, ,
namely parameterization of y by elementsof L,(Y).

y = NZa |¢; |§| ¢, OL,(Y); ZGi:L‘ a, 20 4.2

The functions {¢,;1<i <r} donot have be orthogonal nor even linealy independent,
though most often it is convenient to choose an orthogonal set. Inthe cae of D" we
only used rank 1 expansions. In contrast, expansions of different ranks are useful in this
case. The mrrespondence between y and {¢,;1<i <r}isnot unique, but asin the cae of

N and Q anon-redundant parameterization can be found. Once ajain it is convenient to

work with unnormalized quantities, so we incorporate the expansion coefficients
{a;} and the number of particles N into the functions {¢ }and set

y(y):Z<y|vi>(vi|y> v, OL,(Y); { < N; z =N (4.3

In terms of these parameter functions, denoted as the vedor v , and FH( ) = Fy(v(v),
the minimization problem becmmes

E, = Min{F,(v)} (4.4)
The feasible region X is defined by the constraints
V)EZ|Vi|2_ N=0
i=1
h(v)=[v[-N<0 (4.5)

hj(v)s<vi|vj>:0; i # ]
and the minimum of Eqg. (4.4) can be obtained from the Lagrangian

L(v)=F,(v)- Z)\ij h, — uhy (4.6)
1<t <r
that correspondsto (3.6). By virtue of
V)= 3 wlvilvily) 4.7
and the chain rule, one has
F, _F, & _ o ui(y)
ovi(y) oy(y)oviy) oy(y) 49
F, _F, & _ O 7, () :
ovi(y) dy(y)ovi(y) oy(y)
Noticethat Eq. (4.8) defines the ation of alocal operato F, , that has

(y - y’) and adson v, to producethe function .
ov,(y)

o,
3y(y)
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Eq. (4.6) plusthe change of variables in Eq. (4.8), gives Euler equations ?—L = g—L =0,
v, oV,

that correspond to the generalized eigenvalue problem

o,
-uv.=>»NAv 49
[ 5y .uj i EZQ ijvj ( )
and its complex conjugate. Exad (but, in several cases, not known explicitly) component
patential functionals follow from functional derivatives of Eq. (3.10):

e ,a:T ,5FS ,a:XC ,5FeN and Fox . All these derivatives are evaluated on the same
oy oy oy Jdy Oy oy
F. OF

path D." (y) , which again, leads to the definitions of Oy ,—>and —*< aslocal
oy oy oy

patentials in the one-particle Eq. (4.9) for the density.

The minimization problem, Egs. (4.4) and (4.5) and the resulting Euler Eq. (4.9)
are for determining the density y, that corresponds to the ground N-particle

stateD*N(yo)interms of the parameterization v of y and henceshould be thought of asa

reformulation of the Hohenberg-Kohn equations. Thus, as noted, Egs. (4.5) and (4.9) are
not conventional Kohn-Sham equations but an exad one-particle form of the Hohenberg-
Kohn variation procedure with Hohenberg-Kohn potentials in the definition of the

effedive one-particle Hamiltonian [% - u) . Notein particular that very few
y

restrictions were placed on the form of the density expansion Eq. (4.3) save for its overall
normalization. The parameterizaion of y , Eq. (4.7), can be chosen to have any rank and

to be in terms of any functions that belong to L,(Y)that satisfy Eq.(4.5) and then be used
subsequently in the variational equation (4.9).

4.2 Kohn-Sham Type Procedures.

In contrast Kohn-Sham procedures are based on a strategy that introduces a
partitioning and regrouping of the potential terms (functional derivatives) in Eq. (4.9)
based on model auxiliary statesthat are related to the expansion Eq. (4.7). Examples
include the treatment of generalized Kohn-Sham equations by Levy and Perdew[11].

Part of the incentive for this regrouping is found in the highly non-linear
dependence of the variational equations upon the density. That dependence necessitates
iterative solutions. Their convergence and stabil ity obviously depend on the dhoice of
starting pdentials (which are density dependent). As the patentials are determined by
states associated with densities, it is expedient to incorporate as much information as
feasible about the form of solution states in those potentials. The other motivation for
regrouping is to have as many terms as possible that are both large in magnitude (on
physicd grounds) and straightforward to compute. One strategy for such regrouping isto
rearange the sum of derivatives into combinations related to awell-studied type of
guantum state. The dhoice of such an auxiliary state is dictated by a balance between (a)
simplicity and (b) similarity of the auxiliary state to the solution state. In the standard
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Kohn-Sham procedure (based on uncorrelated auxiliary states) most emphasis is placed
on point (&), while for generalized Kohn-Sham formulations (based on correlated
auxiliary states) the emphasis is more on (b).

For the cae of a non-degenerate ground state the standard Kohn-Sham auxiliary
state iswell-charaderized. (We put aside the degenerate case for now. It introduces
issues of degeneracy at the Fermi level, fradional occupation and continuous non-integer
eledron number, etc. In many treaments those complications em entangled with
incompatible assumptions about single determinantal KS states.) For non-degenerate
ground gtates, the standard KS auxiliary state is areal single determinant of singly
occupied orbitals; any conventionally doubly occupied orbitals simply occur twicein the
determinant. The KS determinant is an Independent Particle State (IPS). Itsform is
appealing becaise it explicitly incorporates anti-symmetry and N-representable, and
because it is easy to manipulate.

Ordinarily, however, the KS procedure is developed in terms of the real-space
charge density p, not the charge-spin density y . A pertinent task therefore isto

determine the kind of KS theory that arises from parameterization via y . After
developing such a y -based theory in this Sedion, we will analyzeits relationship to the
more familiar theory based on pin Section 4.3.

Consider therefore 8,,(y), the set of all IPScorresponding to agiven y , and a
rank N expansion of y
v(y)= 5 (V98 ly)
1=EN (4.10)
<¢i ) j> = 5ij
It is possible to restrict the form of the expansion in Eq. (4.10) by choosing
{#.(y) OR;1<i < N} asisusually done in standard KS theory for p(r) or by setting

{9, =, ;1<i<F} for even N or both but we will not impose either restriction. The N

functionsin Eq. (4.10) determine the first order reduced density operator (FORDO; recall
Appendix B) of some N particle IPS In general many such expansions are possible for a
given y , s0 the correspondence between a fixed y and IPSsis one to many. However,

in general there is at least one pure IPSthat corresponds to any given y , even if y comes
from an ensemble or highly correlated state [6].

The functional that is charaderistic of KS procedures is an IPSkinetic energy, to
wit
Tes(7)= DNI;/SIin(y)Tr{TD,“F‘,} = E;(Din(7)) (4.1
where Er is defined in Eq. (3.11) and D/, (y)is the N-particle IPSthat minimizes this
constrained optimization. If the conditions described in sedions 3.4 and 35 are satisfied

those minimizers form a path D,“F‘,O(y) in ®" . It isimperative to recgnizethat, in general,
the path D}, (v) is completely different from the path DN(y). If we had applied other

19



restrictionsto Eq. (4. 11), e.g. different rank expansions, different normalization for the
functions, etc., yet other paths would have resulted.

The definitionsin Eg. (3.11) can be transformed to KS form by regrouping and
defining diff erence functionals between exad and independent particle paths. In so doing
it isimportant to kegy in mind that that the HK kinetic energy and XC termsinvolve a

system-dependent path D."(y)in N-particle state spacewherea Dy, (Y )involvesthe
Kinetic energy of the IPSaone. Let

Fr(y) = Tes(v) ~ Fr(y) = Er(Dino(v)) ~ Ex(D" (v)) (4.12)
then
Fe(v) =Tes(v) = Fe(y) (413
The KS XC energy then is defined as
FXC,KS(y) = Fxc(y) - 'fT(y) (4.14)
which is equivalent to
FT(V) + Fxc(y) = Ts(y) + FXC,KS(y) (4.15)
and thus the regrouping
Fy (y) = TKS(y) + FXC,KS(y) + Fc(y) + Fs(y) +F (y) (4.16)

By construction, these KS functionals are well-defined and give well-defined
functional derivatives, so their variation proceals as in the precading sedion and leads to
standard KS equations grictly analogous with Egs. (4.4), (4.5), and (4.9). The benefit of
this formulation over the standard one is at least two-fold. It makes clear that the XC KS
term is defined with the help of two dstinct paths and that those paths are essential to the
determination of conditions for the existence of the functional derivatives upon which the
Euler equation (4.10) depends.

4.3 Parameterization in termsof p(r )versus y(y)

Conventionally both the HK and K S theories are based on the charge density p
and not the more general charge-spin density y . The standard formulation of spin density
functional theory [4] extends the parameterization to include S,-densitiesi.e. two

positive spatial components (pa (r),py(r )) . The full spin-density also has been
considered more than once[5] in the form of threespatial components

(0 (1), 0s(r). 5(r)) . However, inall ealier trestments (as far aswe ae avare) the
alpha-beta aossterm is dropped, perhaps becaise it is not a positive function. In contrast,
the present formulation in terms of the full spin density is described completely in terms
of y(y), which is positive. When describing systems that have non-trivial spin properties
atheory based on p aloneisinconvenient as it incorporates those spin properties

implicitly in difficult-to-charaderize potentials rather than explicitly in terms of the spin
propertiesof y . A general spin density formulation of DFT, based on positive densities,

thus sould treat y asthe basic parameter rather than p. As suggested by the remarks
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about the dpha-beta aossterm (and by the form of the KS kinetic energy), the
appropriate objed to consider isthe FORDO (again, recall Appendix B).

The kernel of a FORDO can beexpanded in terms of normalized functions as
DY(y,y') z (4.17)

1<i,)<r
where the set of functions of charge-spin variables {¢,;1<i<r}isa mmplete

orthonormal basis for H*. These basis functions always can be written as a product of
orthonormal functions of spatial variables and orthonormal functions of spin variables

$:(y)=xi(r)a(§); 1siss=% (4.18)

:(y)=x(N)B(§): s+l<is<r
so that Eq (4 18) beoomes

z Dam]X (E)H(E’)
' z Pl ))_(,-(r')a(f)[_B(f')+ > D X (1)X, (r)B(E)a(&") (4.19
* 2 DiXi()X,(M)BE)AE)

In turn this expresson allows us to define reducible, (with resped to the adion of the
spin group SU(2)), spin component kernels as

DL ()= 3 Dl X, (1) ()
1<, )<s
Dys(r.r') = ZZD;ﬁiIX( )X;(r')
S+L_|<<SS
=) (4.20)
= > Da Xi(r

I<i<s
st j<2s

Dps(r.r') = zDéﬁnX( )X;(r')
st+l<i, j<2s
and irreducible (that correspond to one and threedimensional irreps of SU(2)
respedively) spin component kernels as

Prr") = S {Di (r.) + Dl (r.1)
Qulrr') =i (r 1)+ Bk (1.1
Q1) =5 {0k (r.r') = Dh(r.r)}
Q.(r.r) = {Dk(rr) = Dis(r 1)}

The FORDO kernel therefore is expressible &

(4.21)
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DX(y.y') =

(4.22
P(r,r")@(&,&") +Qu(r,r')0uy(&,&") + Qu(r r)0(&,&") +Qu(r r')0.(¢.&')
where the spin kernels are defined as
Ou(£.8") = (a(E)a(&) + BE)B(E)): Ow(€.€")=(a(E)a(&) - B(E)B(E")) @23

0,,(&,&) = (a(8)B(E) + BE)aA(E)); ©,,4(&.8)=(a(8)B(E) - B(&)a(&))

The full charge-spin density in terms of these irreducible spin component kernelsis
Y(y) = P(r.r)Op(&,) + Qu(r.r)0u(&.€)
+Q(r,r)0,(¢.8) +Q4(r.r)e,4(¢.4)
while the dharge density is given by
p(r)= Jy(y)df = P(r,r) (4.25)
Clearly p 0P} O L(R®), hence ould be used to index N-particle states in similar

manner to y , aswasthe cae in the original HK formulation of DFT. Aswe have already
remarked, however, the Q,, and Q_, contributionsin (4.24) do not appea in ordinary
spin-density functional theory .

(4.24)

The energy functional interms of p isrelated to the functional in terms of y by
— _ . _ . N _ N
Fu(p)= Min {F.(y)} = Min[E,(D"(y)}=Es(D)'(p) (429
where 3, (p) ={y; p(r) = [ y(y)dé} and D,'(p)isthe mnstrained minimizer of the
functional E,(D."(y)); v O, (p). If the conditions discussed previously in Sedtions 3.4

and 35 are satisfied Eq. (4.26) determines apath D, (p) in 8, . Once ajain, such pathsin
general are distinct from both the HK paths D." (y) and the KS paths D/, (y ).

The values of component functionals referring to one-particle, spin- free
observables have a onstant value onthe set %, (p). Thisfad isone of the gppealing

properties of the KS kinetic energy for example:

Tes(¥) = Tes(p) Oy 0%, (0) (4.27)
This property does nat hold in general for functionals associated with spin-freetwo-
particle observables nor for spin dependent observables or external magnetic fields.

4.4 Spin-symmetry and Symmetry Breaking

Inthe cae of a p-based DFT it is always possible, even when spin isinvolved

nontrivially, to expand in terms of real functions of threespatial variables and in theory
obtain an exad ground state energy, while for y it isnot possible to restrict the functions

thusly. In addition the X C functional and paential in the p case @nnot contain an explicit
dependence on the spin density, as that has been fadored out of y in obtaining p. Thus
the way that the p -based X C potential takes ac@unt of spin is very obscure except in the
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simplest of configurations. Redll the ealier remark that conventional spin DFT omits
(or else must attempt to reparameterize in an obscure way) two of the contributionsin
(4.24). Asthe XC patentials are in general unknown and must be gpproximated by
physicd and mathematical experience, most praditioners implicitly use the properties of
y , @ least in some partial form. Thisdistinction has not aways been made clea in the

DFT literature and has led to ambiguity, especially in discussons of symmetry bre&ing.
For sates with non-trivial spin charaderistics, the form of parameterization assumes an
important role with regard to symmetry bre&ing, notably when some of the patentials are
not known exactly, asisinvariably the cae. Inthe discusson to follow, we remark on
the ways an exad potential becomes a potential that is “not known exadly” by virtue of
its exad spin-symmetry being different from the spin-symmetry of the problem to which
it is applied.

In both the HK and KS cases it is possible to consider the minimizaion problem
by means of functionals of p parameterized in terms of expansions of the type

2]
p(r)=> xi(r) (4.28)

1=1
where [4]=4 for Nevenand =2 for Nodd. The functions y in general are

different from those in (4.20). Inthe KS procedure the functions { x,;1<i <[]} canbe

identified with the occupied orbitals of the KS IPSand a cmplementary set
{x::;[3]+1<i < s} with the unoccupied ones. However only in the special case of a

ground state, D' (0, ) , that is of the Fukutome [17] time reversal invariant singlet class
can these orbitals be used in the natural expansion of its associated FORDO as

D;(Po) = Pi(p,) = anxiXxi [O(la)al+[B)Al): xi(r)OR 0<n <1 (4.29

In those cases for which the ground state is nat atime reversal invariant singlet, the
FORDO does nat equal P,(p,)and other components defined by Eq. (4.21) enter into its

expansion. In these caesthe [%] red functions parameterizing p, cannd be identified

with the functions that occur in the natural expansion of the FORDO. However they till
can be used to define an auxiliary KS IPSthat corresponds to ared restricted determinant
(i.e., onethat contains only doubly occupied, real-valued orbitals). If the arresponding

functionals Tes(p), Fuc ks(P), Fs(P), R (p) were known exactly, this parameterization
would lea to the exad ground state energy. This datement is the content of the original
HK argument. However, if the functionals are to be gproximated, it is possible to obtain
better approximations to such ground states by letting { x;;1<i < s} be cmplex-valued
functions and considering the more flexible, but equally valid, expansion

E
()= xi(r) (4.30
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in the variational process The cmplex valued functions appeaing in this expansion can,
moreover, be identified with the natural orbitals of more general singlet states.

In order to use expansions in terms of functions that determine first order reduced
density operatorsthat belong to a general Fukutome class, one needs to consider complex
valued functions that have the form of General Spin Orbitals (GSOs). Thusto construct a
KSIPSthat belongs to a general Fukutome class we ansider the following expansion of
the dharge-spin density

[4]
v(y)= 3 Miy)s vi(y) 06 (4.31)
1=1

where the "occupied" and "unoccupied” functions {v;;1<i < r} asociated with this

expansion kelong to a particular Fukutome class Suppose next that an approximation to
Fxc ks Were to be constructed for that class. Symmetry breeking would occur if a lower

ground state energy could be achieved using that approximate functional and allowing the
parameter functions {v;;1<i <[4]}, which determine the KS IPS to belong to adifferent

Fukutome class Of course one would not do this deliberately, but clealy it could occur
for an approximation constructed without explicit consideration of the Fukutome class

If one restricts attention to the Time Invariant Closed Shell (TICS) singlet class
y = pO,, for the parameterization of y , one is essentially working with p . However, the

functionals are based on the general formof y nat p, 9. Fye ks(¥) N0t Fye ws(p) . 1f we
limit the parameterization of y in thisway we should write the functionals as, for

example, FXC,KS(y)L,:p@m , Which isthe KS XC functional in the y formulation of DFT,

but with y restricted to be in the Fukutome TICS class. In this case, the KS determinant
can be formed from the real [%] expansion of y = p©,,, and thus is a determinant

formed by real orbitals with occupation numbers 1 o 2. This congtraint has the effed of
leading to an upper bound to the ground state energy, even in the ase of exact
functionds, if the ground state is not of TICS symmetry.

This symmetry classification has important implications for the aiabatic
conrection formulation of the KS XC patential [18]. Inthat treament, the functional is
found from a Pauli coupling constant integral which usually is said to conned from “the
non-interading ground state”, i.e. the KS determinant, to the fully interading ground

stete. If FXC,KS(y)| isused then, in general, the @upling constant integral will not

connect from the ground state of the non-interading system to the fully interacing
ground gtate, but rather to an upper bound to the exact ground gate.

4.5 Expansions of Rank # [4]

In the precalding discusson we expanded the density in terms of [%] functions,

which belonged to a Fukutome class, an expansion that was particularly suited for the
construction of a KS auxiliary IPSand the use of the re-grouped exchange crrelation
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functional Fy «s() - This expansion also could be used in solving the HK equation
direaly without the use of an auxiliary state and such a potential. There is however no
compelling mathematical reason to have expansions of rank [%] or to use IPS auxiliary
states. The density y can be parameterized as an expansion of any rank, m = number of
nonzero n , in terms of functions belonging to a suitable Fukutome classas

y(y): ini|l/—’i(>’)|2; l/—’i(Y) 0GC; Osn < N;<wi|wj>:5ij; ir} =N (432

The reader should note that the limit on ead of the positive numbers (weights) {n } isN
not 1, aswould be the cae if the weights were occupation numbers. These numbers also
can be folded into the functions {y; } to produce functions {v; } normalized to {n }i.e.

<vi |vj> =no, aswedid in Eq. (4.3). The functions and weights {¢;,n } can be used to
parameterize y in HK type equationsor, inthe cae {0<n <1; 1<i<r; number of non-

zero n, > N}, they can be used to define a orrelated auxiliary state for ageneralized KS

type procedure. A re-grouped exchange rrelation patential based on such a state would
contain more information about the final N-particle state than an independent particle
auxiliary state and thus might spead upiterative solutions of the variational equations. In

the extreme cae of m=1 one can even express the density as p = ww , where w = p? (one

can take any branch of this function) . This fadorization leads to the Pauli potential [19],
aparticularly DFT scheme that we shall discuss elsewhere.
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Appendix A: Glossary of Mathematical Symbols

SN The mnvex set of N-particle states

8u(y) The set of N-particle statesthat producethe same
density y

Sy; The set of First Order Reduced Density Operators
(FORDOQ's)

Sur(Y) The set of Independent Particle FORDO's that
producethe same density p

31(9{ N ) The spaceof traceclass operators acting in the
Hilbert space x"

3N The Hilbert spaceof pure N-particle fermion
states. It is an N-fold antisymmetric tensor
product of the Hilbert spaceof pure one-particle
states.

DN N-particle state operator, if it is not a projedor
onto a 1-dimensional subspaceit represents a
mixed N-particle state
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The Hilbert spaceof Hilbert Schmidt operators
adingin #"

Fiber Bundle with base space P,,, and fibers
Su(¥)

Lagrangians

Combinatorial coefficient "r choose N

Charge-spin density as a function of space and
spin variables (r, &)

R3x(2

Linea normed spaceof absolutely integrable
complex-valued functions of 3 real and 2
complex variables.

Hilbert spaceof square-integrable complex-
valued functions of 3 real and 2 complex
variables.

Linea map from the spaceof bounded N-particle
operatorsto the spaceof absolutely integrable
complex-valued functions of the variablesy.

Continuous Fermi field annihilation operator that
depends on the dharge-spin variabley.

Discrete Fermi field annihilation and creaion
operators

Linea spaceof equivalence classs of Trace
Classoperators. The operators are equivalent if
there differenceliesin the kernel of =3,

PN Positive ane of charge-spin densities derived
from N-particle states.

= Linea energy functional based on the
Hamiltonian H; it ads on the spaceof N-particle
TraceClass operators.

Er Linea energy functional based on the Kinetic
Energy operator.

Exc Linea energy functional based on the XC terms.

Fu Nonlinea energy functional based on the
Hamiltonian H; it ads on the spaceof absolutely
integrable cmplex valued functions of the
variablesy.

DN (y) Path of N-particle states; each state on the path
corresponds to adensity y and is the minimum
energy state for that density.

DN, (v) Paths of 1P N-particle states.

Q(y) Path of Hilbert Schmidt operators
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[], Equivalence classes of N-particle TraceClass
operatorsthat all map to the same function (.

(P)y Set of N-particle Hilbert-Schmidt operators that
produce N-particle states associated with the
same dharge-spin density.

G The complex numbers

FORDO Firg Order Reduced Density Operator
HK Hohenberg-Kohn

KS Kohn-Sham

NGSO Natural General Spin Orbitals
R The real numbers

Appendix B: First Order Reduced Density Operator
The FORDO is defined by alinear contraction map, Cy, , given by the following
CuiBy(H") - B ()
D' =Cy(D")
Dj = Tr{ajTai D N} (B.1)
D'= z Dja'a,

i,]=1

The integral kernel of the FORDO is given by
D'(y.,y,) = Tr{®'(y,)®(y,)D" }

D'= ” D*(y1.Y,)®"(y,)®(y,)dy,dy,

Y xY

(B.2)
and the density is thus the diagonal of thiskernel, i.e. y(y) = D'(y,y)
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