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1. Dedication and Introduction

Prof. Reszo Gáspár was among the pioneers, along with Dirac, Thomas, Fermi,
and Slater, of the part of many-Fermion theory that has become known as Density
Functional Theory since the work of Hohenberg, Kohn, and Sham.  We are honored to
have the opportunity to present a portion of our work on formal Density Functional
Theory in a volume dedicated to recognizing Prof. Gaspar’s contributions.

In two recent papers [1,2] we have presented significant portions of an effort to
provide a comprehensive mathematical basis for Density Functional Theory. The aim is
to be both formally sound and to provide a structural framework for the development of
improved approximations.  The earlier paper addressed the relationship between
symmetry breaking in Kohn-Sham solutions and the essential structure of the KS orbitals
that emerges from general classification by spin-rotation and time-reversal symmetries.
The later paper summarized a reformulation of the constrained-search construction of
time-independent Hohenberg-Kohn functionals and their variational properties and, on
that groundwork, presented a new formulation of time-dependent DFT based on the time-
dependent variational principle.  New and/or improved results for several major aspects
of the time-independent problem were stated there without proof.  Here we address those
issues.  We pay particular attention to rigorous definition of the functionals (including
careful distinctions among them that often seem to be ignored), rigorous conditions for
the existence of well-defined functional derivatives, conditions under which a density is
associated with a one body potential (V-representabil ity), and formulation of various
kinds of one-particle functional equations (including but not limited to Kohn-Sham
equations).

2. Mathematical Preliminaries

This section summarizes mathematical structures that are pertinent to our analysis
of various energy functionals that can be used in DFT. Note to the reader: the notation, in
spite of our best efforts, is at points quite intricate.  It is summarized in Appendix A.
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2.1 Operators and States

The objective of DFT may be stated succinctly as the characterization of quantum
states by densities.  To make full use of the representation of quantum states by density
operators, we will be focusing upon two specific subsets of the set of all Bounded
Operators, 

� �� �
, acting in a Hilbert space � .  The two subsets are the set of Trace

Class Operators, � �1 � �
, and the set of Hilbert-Schmidt Operators � �2 � �

.

The set of bounded operators is rich in mathematical relationships between its
elements.  In particular it is a normed linear space with norm, for each operator
Z ∈ � �� �

, defined by

Z
Z

= ∈sup ;
ψ

ψ ψ
ψ ψ

ψ  � (2.1)

Its elements can be multiplied, thus giving it an algebraic structure. This multiplication is
a continuous operation with respect to the norm in Eq.(2.1), as is the adjoint operation,
and together they have the property

Z Z Z Z† †= =2 2
(2.2)

Algebras with this property are called C*-algebras [3].

The subset of trace class operators� � � �1

1
2

	 
 � �
 � � �
= < ∞ ∈

�� � � ��X Tr X X X; ,† (2.3)

with its norm defined as

X Tr X X
1

1
2= †

� �� �
(2.4)

is not a C*-algebra, but only a normed *-algebra as Eq. (2.2) is not satisfied for all of its
elements. This algebra is especially significant as it contains the set of quantum states,
both mixed (ensemble) and pure, associated with the Hilbert space � . Positive
normalized trace class operators, D , called density operators represent these states�

= ≥ =D D Tr D; ,0 1
� ��  

(2.5)

The set of states !  is convex i.e. α αi i
i

i
i

D∑ ∑∈ =! ;  when  1 and α i ≥ 0 .

As the density operators are positive they always can be expressed as
D QQ= † (2.6)

where Q is a Hilbert-Schmidt operator, an important relationship that will be used
extensively in the material that follows.
  

The Hilbert-Schmidt operators comprise another subset of the set of Bounded
Operators defined by " # " #

2 $ % &  $ %' (
= < ∞ ∈Q Tr Q Q Q; , † (2.8)

They actually form a Hilbert space with an inner product defined by

Q Q Tr Q Q1 2 1 2| )* + ,
= † (2.9)

which defines the Hilbert-Schmidt norm



3

Q Q Q
2

1
2= |

- .
(2.10)

Like the Trace Class operators the Hilbert-Schmidt operators also form a normed *-
algebra.

In general, the sets of Trace Class operators and Hilbert-Schmidt operators are not
contained in each other, but are connected in the following manner

Q Q QQ

X X QQ Q Q

1 2 2 1 2 1

1 1 2 1 2 2

,

; ,

∈ ⇒ ∈

∈ ⇒ = ∈

/ 0 / 0/ 0 / 0- . - .- . - .†

†     
(2.11)

It is the latter property that justifies Eq. (2.6). If the dimension of 
0

is finite all of these
spaces of operators are identical.

2.2 Densities

The relevant Hilbert spaces, 
0 N

1 2
, describe the pure states of N-electron systems

and are defined as N-fold antisymmetric tensor products of a Hilbert space of one-particle
states 

0 1 , which we will consider to be represented by square integral functions, L2 Y
- .

,

of charge-spin variables y r Y y r r 3 2= = = ∈ ∈, ; , ;ξ ξ ξ
- . - .1 2

 ,  
3 4

.  In the original

formulation of DFT the object of paramount interest was the electron charge
density, ρ r

5 6
, a function of position only. However it has become increasingly evident

that generalizations involving spin are more flexible and powerful tools with which to
construct functionals and describe the behavior of electronic systems. These extensions
take the form of Spin-Polarized DFT [4] in which a two-component space density is

considered ρ ρα βr r
5 6 5 67 8

, one component associated with alpha-alpha spin interactions

and one with beta-beta spin interactions, and the more general full spin DFT [5] that

involves a three-component space density ρ ρ ρα αβ βr r r
9 : 9 : 9 :; 8

, , that also includes alpha-

beta spin interactions.  Though the three component form is more general it involves a
spatial density ραβ r

9 :
that is not a positive function.

In order to recover a general spin description, equivalent to spin DFT, while
maintaining positivity we consider the full charge - spin number density, γ y

9 :
, a function

of three space and two spin variables. The linear map ΞN
1  that produces the full number

density is a contraction map from the space of N-particle trace class operators into

L1
3 2< =

×
> ?

 the space of complex-valued absolute integrable functions of charge-spin

variables

Ξ N
N L L1

1 1
3 2

1: @ A> ? > ? 9 :
→ × ≡

< =
Y (2.12)

This map is defined in terms of Fermion field operators by

ζ y y y y Y
9 : 9 : 9 : 9 : 9 :B C 9 :

= = ∈Ξ Φ ΦN X Tr X L1
1

† . (2.13)

The field operators used in this definition are given by
Φ y y

9 : 9 :
=

≤ ≤
∑ ϕ

i
i r

i
1

a  (2.14)
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in terms of the discrete field operators, a ,a†
i i

D E
 (overbars denote complex conjugation), in

turn these are defined using a basis of F 1  comprised of one-particle functions of space -

spin variables ϕ
i

i r;1≤ ≤
G H

and their action on the vacuum vector φ

a†
i iφ ϕ=  (2.15)

The field operators satisfy the fermion anti-commutation relationships
Φ Φy y y y

I J I J I J
,

,

†

†a a

+

+

= − ′

=

δ

δi j ij

(2.16)

The First Order Reduced Density Operator (FORDO), D1 , which is defined in a similar
fashion also can be used to define the density (Appendix B).

The kernel of the linear map ΞN
1  is a linear subspace of K F1

N
L M

, which we can

use to define an equivalence relationship on K F1
N

L M
by

  X Y X Y Ker X YN N N~ ⇔ − ∈ ⇔ = =Ξ Ξ Ξ1 1 1
D E I J I J

ζ (2.17)

where the double arrow indicates equivalent statements. We denote these equivalence
classes by ζ

N
 and note that

if  and   then  α ζ α ζi
i

i N i i
i

N
X i X= ∈ ∀ ∈∑ ∑1 (2.18)

These equivalence classes are the essential tool for identifying states with densities.

The map ΞN
1 , when restricted to the convex set of N-particle states, N N , has

values in the convex set, O 1N , of positive functions in L1 Y
P Q

 that are normalized to the

value N O 1 0N d N= ≥ =
R

γ γ γ; ,y y y
S T S TU V

(2.19)

Harriman [6] has shown that this map is "onto" i.e. any element of W 1N  comes from at
least one element of X N .  Note that this property does not rule out the possibil ity that an
element of W 1N  can also come from operators not in X N . This "onto" property should be
compared to the case that arises in the N-representabil ity problem [7].  In it, not every
positive two-particle operator comes from a state in X N so the corresponding contraction
map does not have the “onto” property.

The equivalence classes ζ
N

 have a natural indexing by the functions ζ
Y Z

and

can be expanded about a reference representative point
ζ ζ

N ref N ref N
X Ker X= + ∈Ξ1

[ \
;   (2.20)

that is, given any single operator that maps to a specified density, all others that do so are
determined by addition of elements of the kernel of the contraction map to this operator.
If we restrict attention to γ ∈ ] 1N  then each γ

N
 contains a convex set of states, ^ N γ

_ `
belonging to ^ N
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a a
N N Nγ γ

b c
= ∩ (2.21)

It is important to emphasize again that, even for densities γ , the equivalence class γ
N

can contain operators that are not positive i.e. are not states, as well as both pure and
ensemble states.

The elements of the convex set 
a

N γ
b c

 also can be expanded about a reference

representative state a a a
N ref

N
N ref

N
ref
N

ND D Dγ γ γ
b c d e b c

= + ∈Ξ1 , ;   (2.22)

where 
a

ΞN
1 γ

b c
is a convex set, contained in Ker NΞ1

f g
, of state differences

D D DN
ref
N N

N− ∈;   
a

γ
b ch i

that depend explicitl y on γ and Dref
N .

2.3 Fiber Bundles

Though not exploited extensively in this paper, except for helping to visualize the
mathematical connections in a more concrete fashion as shown in Figure 1, the set

γ γ,
a

N

b cf g
 can be described mathematically in a convenient fashion as a fiber bundle [8],

with fibers
a

N γ
b cf g

and base space j 1N , which we will denote by k N .

Figure 1: The vertical lines are the fibers l N γ
m n

; the curve is a path of states

(fiber bundle vocabulary: cross-section); the thick horizontal line is the base
space, in our case densities o 1N . The complete collection of vertical lines is, in

our case, the set of states l N .

The best known example of a fiber bundle used in physical applications is that of
the set of tangent spaces (the fibers) associated with a nonlinear manifold (the base space)
[9]. In that case, the fiber bundle is actually a vector bundle as the fibers are vector
spaces, such is not the case here, however, as the fibers are the convex sets l N γ

m n
which

are not vector spaces. A cross section is a map from the base to a fiber. In the present
case p q rp r: 1N N

N
ND

→
= ∈γ γ

s t s t (2.23)

u
1 N

v
N γ

w x
y

γ
z {                                                             

                                                              
|

N} ~� � � � � � � �� � � � � � �
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which associates a specific density with one specific operator in � N γ
� �

.  Every different

association determines a different � . We call these cross sections state paths in � N .  In
the example of tangent spaces the cross-sections are vector fields.

3. Energy Functional Defined on Paths

The relationship between N-particle states, in which we include mixed states,
represented by N-particle operators and the charge-spin density,γ y

� �
, as defined in Eq.

(2.13), is not 1-1. This fact is a central issue in the rigorous formulation of DFT. The
power and simplicity of DFT arise from the characterization of an N-Fermion system by a
real positive semi-definite function (density) of a single 3D spatial variable and one 2D
complex spin variable, but that characterization rests on the subtle details of just how the
density determines a N-particle state.

In order to develop a framework in which to treat these topics rigorously for both
time-dependent and independent systems, we have, as remarked in the Introduction,
revisited the constrained search of Levy [10,11] to generate a well-defined energy
functional of the density.  As shown in detail i n what follows, we then do a constrained
optimization analysis of the problem as described, for example, by Hestenes [12]. These
techniques provide a specification of paths (of N-particle density operators) that are
defined in N-particle operator space such that they are labeled by densities in a 1-1
fashion. The expectation of the Hamiltonian with respect to N-particle states on those
paths then becomes a well defined functional of the density γ y

� �
 and the ground state

energy is the minimum value of this functional. We remark that this treatment bears some
resemblance Kryachko and Ludeña’s (KL) use of “orbits” [13].  It differs in two essential,
specific ways: (a) The paths we use are determined by optimization criteria that guarantee
the resulting functionals have well-defined functional derivatives irrespective of the
topology of the density. KL, in contrast, identify orbits by employing the Bader density
surface criterion[14].  Those orbits therefore are tied explicitly to the molecular point
group symmetry but without any explicit criteria for existence of the required derivatives.
Note also that molecular structure and bonding often involve changes in the point group
symmetry, so the KL orbits intertwine chemical and mathematical properties that might
better be left apart. (b) The analysis we use characterizes the states by the general charge-
space density γ , not the charge density ρ , a point already mentioned that is treated in
more detail below.

3.1 Energy Functionals

The energy functional defined by a Hamiltonian, H, given by

E

E D Tr HD

H N

H
N N

: � →

=

�� � � � (3.1)

does not have a unique value on a given convex set � N γ
� �

 as defined in Eq.(2.21), as

many different DN 's may give the same γ while producing different values E DH
N

� �
.

ThusEH  does not lead to a well-defined function on the space of equivalence classes of
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density operators, a space whose elements are in 1-1 correspondence with densities. To
obtain an energy functional that is well defined, we use the constrained search logic and
define another functional in terms of the charge-spin density as

F Min E D E DH
D

H
N

H
N

N
N

γ γ
γ

� � � � � �� �� �= =
∈� * (3.2)

whereDN
* γ

� �
 is the minimizer of EH  in the set � N γ

� �
. Note that the case of a non-unique

minimizer is excluded; see Savin [15] for a related discussion. Minimization in Eq. (3.2)
involves three types of constraints, normalization, positivity and fixed density.
Normalization and positivity can be handled by the factorization [recall Eq. (2.6)]

 D
QQ

Tr QQ
QN N=  

†

†
  ¡ ¢ £; ∈ ¤ ¥2 (3.3)

which leads to the energy functional form

    F Min
Tr HQQ

Tr QQ
Min E Q Q E Q QH

QQ Q
H H

N

¦ ¦ ¦§ §¨ © ª «¬ « ­ ® ¯ ° ¯ °± ®² ² ²³†

†

†

† †

~
* *, , (3.4)

The first Min is over all QQ†  that correspond to ´ , i.e. that yield that density or a
constant multiplier of it.  This correspondence also can be expressed by defining the set,
γ

N
,of feasible Q's by a constraint function, g, for a  fixed γ  as

g:

g  = 0

g =  

†

†
†

†

µ ¶ ·
2 1

N
N

Q Q

Q Q
QQ

Tr QQ

¸ ¹º ¹
º ¹ » ¼

→

½¾¿ ÀÁ Â
−

, ,

, ,

γ

γ γΞΞ ΝΝ
11

(3.5)

3.2 Minimization

The minimization in Eq. (3.4) subject to Eq. (3.5) can be carried out via a
Lagrangian functionÃ

Q Q E Q Q g Q Q dH, , , , , , ,† † †λ γ λ γ
Ä Å Ä Å Æ Ç È É

= − Ê y y y
Y

(3.6)

Its stationary points

∇ = ∇ =ËÌÍ ÎÏ Ð
=

Q Q
Q Q Q Q

Q Q

Tr Q Q

Ñ Ñ
* * * * * *

* *

* *

, , , , , ,† †

†

†

†

 

λ γ λ γ

γ

Ò Ó Ò Ó
Ô Õ

0

ΞΞ ΝΝ
11

(3.7)

determine the constrained extrema of E Q QH , †
Ò Ó

. (For the ground state obviously a

minimum is required.) By considering the sensitivity of the minimizer Q* γ
Ö ×

 to variations

in γ  and checking that certain conditions on the first and second derivatives ofÑ
Q Q, , ,† λ γ

Ò Ó
, are satisfied (which we examine below), Hestenes [12] showed that one

can define a path of solutions, Q* γ
Ö ×

, parameterized by γ , not just a set of solutions
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indexed byγ . These paths in the parameter space Ø Ù2
N

Ú Û
determine density operator

paths D
Q Q

Tr Q Q
N

*
* *

* *

γ
γ γ

γ γ

Ü Ý Ü Ý Ü ÝÜ Ý Ü ÝÞ ß=
†

†
 in à á âN

N⊂ 1 ã ä .

The energy functional FH γ
å æ

developed in Eq. (3.4) now can be viewed as the

energy functional EH  restricted to such paths i.e.

F E Q Q E DH H H
Nγ γ γ γ

å æ å æ å æã ä å æã ä= =* * *, † (3.8)

A further consequence of the Hestenes analysis is that one can define a Lagrange
parameter functional λ γ*

å æ
 by setting λ γ λ* *

å æ å æ å æ
y y= for each γ and its associatedλ * ,

obtained from solution of Eq. (3.7), and that this functional can be identified rigorously

with the functional derivative 
δ
δγ
FH of FH γ

å æ
along the path Q* γ

å æ
. Note that the energy is

a 1-1 functional of the density on this path and simultaneously that the functional
derivative is defined on this particular path. It is possible define other paths in à N on
which the energy is also a 1-1 functional, but on those other paths the following crucial
fact will not be true

E Min F
N

H0
1

=
∈γ

γç  è éê ë
(3.9)

where E0  is the ground state energy of the system.

The parameterization of state density operator paths by the pathsQ* γè é , i.e.

D
Q Q

Tr Q Q
N

*
* *

* *

γ
γ γ

γ γ
è é è é è éè é è éê ë=

†

†
, in general is redundant.  That is, in general the association

between parameters Q* γè é  and states. DN
* ìè é  is not unique. The parameterization can be

made non-redundant in a straightforward manner. For the purposes of this paper,
however, the redundant parameterization is more convenient.

The explicit form of the functional FH  is at this point unknown, hence in practical
applications has to be approximated. To facil itate creation of such approximations one
decomposes FH  into a sum of other functionals that focuses essentially all the unknowns
into one component, the exchange-correlation functional, FXC.

F F F F F F FH C XC S eN Ext Tγ γ γ γ γ γ γè é è é è é è é è é è é è é= + + + + + (3.10)

(with subscripts C, XC, S,  eN, Ext, and T denoting Coulomb, exchange-correlation, spin,
electron-nuclear attraction, external, and kinetic energies respectively). We emphasize
that Eq. (3.10) is not the Kohn-Sham decomposition familiar in prior presentations of
DFT, because there is no KS auxil iary system involved in this decomposition. From the
construction presented above it is clear that in order to maintain consistency and to define
functional derivatives properly all the functionals in Eq. (3.10) must be defined on the
same path in í N ; recall Figure 1. These two observations lead to what may be unfamil iar
definitions for the kinetic energy functional and the exchange-correlation functional, as
follows:
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F d d

F Tr D Tr TD E D

F Tr H D E D

F Tr
r

D F Tr V D F E D

F

C

T i
i

N N
T

N

S S
N

S
N

XC
iji j N

N
C

N
C XC

N

eN

γ
γ γ

γ γ γ γ

γ γ γ

γ γ γ γ γ γ

î ï ð ï ð ï
ð ï ð ï ð ïñ ò ó ôõ ö
÷ ø ÷ øù ú ÷ øû ö

÷ ø ÷ ø ÷ ø ÷ øù ú ÷ ø ÷ øû ö

=
′

′
′

= − ∇
üý þ ÿ �� ≡ =

= =

=

��� �� ��	 
�
 � 

� 
 − ≡ − =

�
∑

∑
≤ < ≤

1

2

1

2

1

2

1
12

y y

r r
y y

-

* * *

* *

* * *

γ γ

γ γ

µ

µµ

� � � �
� � � � � �= −

−

=

∑

∑

�
� y

r R
y

y y y

Z
d

F U d

ii

Ext i
i

(3.11)

(The HS contribution is to allow for an explicitly spin-dependent Hamiltonian.) A
particular point to observe that, unlike the familiar KS construction, this exchange-
correlation functional does not involve the kinetic energy. From the perspective of the
DFT literature, Eqs. (3.10) and (3.11) are a formulation of the Hohenberg-Kohn
functional that is constructed to ensure that the functional derivatives required for
variational minimization actually exist.

One can regroup the functionals in (3.11) into a universal electronic functional
that describes the internal energetics of the electrons at prescribed � ,

F F F F F

E D E D E D E D E D

C T S XC

C
N

T
N

S
N

XC
N N

γ γ γ γ γ

γ γ γ γ γ

� � � � � � � � � �� �� � � �� � � �� � � �� � � �� �= + + +

= + + + =* * * * *

(3.12)

and one describing the effects of the environment upon the electrons
F F FV eN Extγ γ γ

� � � � � �
= + (3.13)

where the total single particle potential V is defined as

V V V V
Z

UeN ext

ii
i

i

y r
r R

y
� � � � � �

= ≡ + =
−

−∑ ∑,ξ µ

µµ
(3.14)

It describes the interaction with the nuclear framework and other external fields and also
could have a non-trivial local spin dependence.  (It should be noted that it is possible,
though unconventional, to formulate interactions with external magnetic fields in this
manner.  Note also that in many DFT papers, the “external” potential is just VeN .)

A very significant property of FV γ
� �

 is that it is not defined on a path in�
N γ

� �
but directly on elements of � 1N  leading to the observation that E and EH  have the

same minimizer in the set � N γ
� �

i.e.
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E D Min E DN

D

N

N
N

* γ
γ

� � !  !" #=
∈$ (3.15)

while

E D Min E D E D V dH
N

D
H

N N

N
N

* *γ γ γ
γ

% &' ( ) ( * +) ( * + * +, -= = −
∈ ./ y y y (3.16)

This property is not shared byE E E EH T S XC with ,   and  separately, thus the kinetic energy

functional ET  minimizer DT
N γ

0 1
 given by

E D Min E DT T
N

D
T

N

N
N

γ
γ

0 12 3 2 34 5=
∈

/ (3.17)

is not the same as the minimizer for the universal electronic energy functional E

E D Min Tr T V H D Tr T V H D

Tr T V H D

N

D
S

N
S

N

S T
N

N
N

* *( ) ( )

( )

γ γ

γ
γ

0 12 3 6 78 9 : ;< =: ;< => ?= + + = + +

≠ + +

∈@ 12 12

12

(3.18)

3.3 Conditions for Existence of Paths and Derivatives

As stated in Eq. (3.7), a stationary point, Q* γ
: ;

, for the minimization problem Eq.

(3.4) exists when one can find a Lagrange parameter functionλ γ*

: ;
such thatA B C D E FF FG

P P H PQ Q E Q Q g Q Q d

g Q Q P Q Q

H
* * * * * * * *

* *

, , , , , ,

, , ;

† † †

† †

 

and  for  or 

I J K JJL M N M O P Q R S PQ R y y y
Y

0

0
(3.19)

The energy gradients in Eq. (3.19) can be viewed as real valued linear maps

∇ →P H
NE Q Q P Q Q* *, :† †  =  or 

Q R Q RT U
2 V W  (3.20)

which can be combined to form the total functional gradient ∇EH  that produces the first

order variation δEH in EH  with respect to the operators Q Q, † at the minimizing point

Q Q* *, †

δE E Q Q P E Q Q P E Q Q PH H Q H Q H= ∇ = ∇ + ∇* * * * * *, ( ) , ( ) , ( )† † † †
†

X Y Z Y Z Y
 (3.21)

The constraint gradients in Eq. (3.19) can be viewed as linear maps and the components

∇Pg Q Q* *, ,† γ
Z Y

can be combined to form the total constraint gradient ∇g Q Q* *, ,† γ
Z Y

which

can viewed as the linear map

∇ →

∇ = ∇ + ∇

g Q Q L

g Q Q P g Q Q P g Q Q P

N

Q Q

* *

* * * * * *

, , :

, , ( ) , , ( ) , , ( )

†

† † † †
†

γ

γ γ γ

Z Y Z Y [ \] ^ ] ^ ] ^_ `
2 1 Y

(3.22)

One can conceptualize these maps more concretely via an operator basis

Ψ Ψi j

a b
in c d2

N
e f

. Letting the dimension of d 1 be r, we can expand the
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operatorsQ Qij i j
i j

r

N

=
=

ghi jk l
∑ Ψ Ψ
, 1

 and Q Qji i j
i j

r

N
† =

=

mno pq l
∑ Ψ Ψ
, 1

 (again the overbars denote

complex conjugation) and express the energy gradient as

∇ ≡ rsttt
uv wwwxyz {| } xyz {| } xyz {| } xyz {| }E Q Q

E Q Q

Q

E Q Q

Q

E Q Q

Q

E Q Q

Qr

N

r

N

r

N

r

N

* *

* * * * * * * *
,

,
, ,

,
,

,
, ,

,
†

† † † †~ � ~ � ~ � ~ � ~ �
∂

∂
∂
∂

∂
∂

∂
∂11 11

� � (3.23)

and the constraint gradient as

∇

≡ �����
�� ������ �� � ��� �� � ��� �� � ��� �� �

g Q Q

g Q Q

Q

g Q Q

Q

g Q Q

Q

g Q Q

Qr

N

r

N

r

N

r

N

* *

* * * * * * * *

, ,

,
, ,

,
,

,
, ,

,

†

† † † †

  

γ

∂
∂

∂
∂

∂

∂

∂

∂

� � � �� � � � � � � � � � � � � � � �y

y y y y
11 11

� � (3.24)

Noting the form of the constraint function g, Eq. (3.5), we see that

∂ γ
∂

∂

∂
g Q Q

P

Q Q

Tr Q Q

P
P Q Q

ij ij
ij ij ij

* *

* *

* *, ,
;

†

†

†

  or 

� � � � � � � �
y y==

ΞΞ ΝΝ
11 ��  ¡¢ £

= (3.25)

leading to ∇ = ∇ ��  ¡¢ £g Q Q
Q Q

Tr Q Q
* *

* *

* *

, ,†
†

†
γ

¤ ¥ ¦ �ΞΞ ΝΝ
11 , which explicitly does not depend on γ .

The central issue at this point is to determine conditions for existence of solution

paths Q* *,γ λ γ
� � � �¦ � , i.e. continuous maps (defined with respect to the norms of§ ¨

1
N

© ª
and L1 Y

« ¬
)

Q

L

N
N

N

*

*

:

:­ ® ¯­ 1 1

1 1

→

→ ° ±² ³
 λ Y

(3.26)

not  just a set of optimal values D N
N* *, ;γ λ γ γ

² ³ ² ³´ µ
∈ ­ 1 . By consideration of the implicit

function theorem, Hestenes [12] has shown that sufficient conditions are:

I. The map ∇g Q Q* *, ,† γ° ± is nonsingular. This condition is equivalent
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to
∂ γ γ

∂

ΞN

ij

Q Q

Q
i j

r

N

1

1
* *

; ,

¶ · ¶ ·¸ ¹
†

 ≤ ≤ º»¼ ½¾ ¿ÀÁ ÂÃÄ Å ÆÇÈ É being linearly independent as functions

in L1 Y
Ê Ë

,  (recall Eq. (3.5): g =  †Q QQ,γ γ
Ê Ë Ì Í

ΞΞ ΝΝ
11 − ).

II . The map∇ →2
2 2

Î Ï Ð Ï Ð
Q Q N N

* * *, , , :† λ γ
Ñ Ò Ñ Ò Ñ Ò

 is nonsingular. This condition is

equivalent to the Hessian matrix

∂ λ γ
∂ ∂

2

1

Î
Q Q

P P
i j k l

r

N
P Q Q

ij kl
ij ij ij

* * *, , ,
; , , , ; ,

†
Ñ Ò

≤ ≤ ÓÔÕ Ö× Ø =

ÙÚ ÛÜÛ Ý ÞÛß Û  being nonsingular.

The formal resemblance of these conditions to those for a stable constrained minimum

energy path on a multi-dimensional potential energy surface is clear.  These two sets of

conditions can be compressed into one by demanding that the augmented Hessian defined

as à á
Q Q

Q Q g Q Q

g Q Q

t

* *
* * * *

* *

, ,
, , , ,

, ,
†

† †

†
γ

γ γ
γ

â ã ä ã ä ãä ã∇ −∇
∇

åæçç èé êê2

0

ë
 (3.27)

be nonsingular.

Along paths on which these conditions are satisfied, the Lagrangian ì  has the
explicit dependenceí

D E D g D d E DN
H

N N
H

N
* * * * * *,γ λ γ γ λ γ γ γ

î ï ð ïñ ò ð ïñ ò ð ï ð ï ð ïñ ò ð ï ð ïñ ò
= + =

ó
y y y

Y

(3.28)

where again we have utilized the relationships g D DN
N

N
* *γ γ γ

ô õö ÷ ô õö ÷
= − =Ξ1 0along a

path and D Q QN
* * *γ γ γ

ô õ ô õ ô õ
= † . Differentiating Eq. (3.28) with respect to γ along a path,

one obtainsøù ú ù úù ú û ü ýû ý ý ü ý ûþ
y y

y

y
y y y y y

Y

ÿ � ÿ �� �ÿ � ÿ �� �ÿ � ÿ �� � ÿ � ÿ �� � ÿ �� � � � � � � �	
 ���

 � ���� �� ��
E D

g D
H

N

N d
* *

* * 0 (3.29)

This result follows from (3.19) by appeal to the implicit function theorem to give a path
parameterized by � , then confining the derivative of the Lagrangian to that path and

using the chain rule � � � � � �� �� �� �D

D
N

N

*

* 0.  By the use of the constraint relationship along

a path yet again and integrating the delta function term in (3.29), one finds that the
derivative of the energy functional along a path is equal to the Lagrange parameter
function along that path i.e.
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� � � �� � � �� �*

*
y

y y

�  ! " # $% "# $ # $# $& &E D FH
N

H (3.30)

where the second equality follows from Eq. (3.8).  Eq. (3.30) shows that the Lagrange
parameter function is actually a measure of the sensitivity of the energy functional to
changes in its argument γ .

3.4 Evaluation of Derivatives

One can examine the conditions just given in more detail by noting that the
energy EH , contraction map ΞN

1 , and constraint g are the following functions

E Q Q
H Q Q

S Q Q

Tr HQQ

Tr QQ

QQ

Tr QQ

QQ

S Q Q

Tr QQ

Tr QQ

g Q Q
Tr QQ

Tr QQ

H
H,

,

,

( )

,

, ,

†

†

†

†

†

†

†

†

†

† †

†

†

† †

†

' ( ' (' ( ) *+ * + *, - . /, - . / . /+ *+ *, - . / . / . /+ *+ * . /
0 0 1
2
2 3

4
ΞΞ ΝΝ

11 y y y

y
y y

y

5 5
5 56 6 (3.31)

which have gradients

∇ = ∇ − ∇

∇ = ∇ − ∇

7 899
: ;; =

P H P H P

P P P

E Q Q
S Q Q

H Q Q E Q Q S Q Q

QQ
S Q Q

QQ QQ S Q Q

P Q Q

,
,

, , ,

,
,

,

†

†

† † †

†

†

† † †

†

< = < = < = < = < => ?@ A @ A @ A B C @ A B C @ AD ?1

1ΞΞ ΞΞ ΞΞΝΝ
11

ΝΝ
11

ΝΝ
11y y

(3.32)

Here the gradient functionals evaluated at the point ( , )Q Q† are themselves linear maps of
the argument X, that is E FE FE F G

Q

Q

Q

N

H Q Q X Tr HXQ

S Q Q X Tr XQ

QQ X Tr XQ

X

,

,

† †

† †

† † †

H I J K L MH I J K L MH I J K J K J KL MH IΞΞ ΝΝ
11

y
y y

N NO P
2

 (3.33)

The subscript y on the LHS of the third line of (3.33) is a reminder that the value lies in
L1 Y

Q R
. In order to check whether condition I is satisfied at a given Q* γ

S T
, one needs to

ascertain whether

 

Tr Q i j
r

N

Tr Q i j
r

N

i j

i j

Φ Φ Ψ Ψ

Φ Φ Ψ Ψ

† †

†

and

y y

y y

S T S TU V
W X W XY V

*

*

; ,

; ,

1

1

≤ ≤ Z[\ ]^ _`a b c de
≤ ≤ fgh ij klm n o pq (3.34)
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are sets of linearly independent functions in L1 Y
r s

.  Condition II involves second

derivatives that have the following form at stationary points Q* γ
t uv w x yz {|{ } ~{� {� � � � �� �� �PP PP

PP PP

Q Q
Q Q

S Q Q

S Q Q
Q Q Q Q S Q Q P Q Q

2 2

2 21

� �
� �* * *

* *

* *

* *

* * * * * * * * *

, , ,
,

,
, , , , ; ,

†

†

†

†

† † † †  

� � � �
� � � �� �

� � � � � � � �� � (3.35)

where we have introduced the unnormalized constraint Lagrangian �  defined by�
Q Q Q Q Q Q TrQ Q dH* * * * * * * *

† † † †
� � � � � � � � � � � �� �� � ���   ¡

y y y y
Y

ΞΞ ΝΝ
11 (3.36)

As the functions ¢  and S are quadratic, their second derivatives are easy to
evaluate. First, expand £ H Q Q* *

†
¤ ¥

in terms of a matrix representation with respect to the

basis Ψ Ψi j

¦ §
(recall the discussion just before Eq. (3.23))¨

H ij kl
ijkl

i j l k

ij kl
ijkl

i k jl ij kl ki jl
ijkl

ij kl lkij
ijkl

QQ Tr HQQ Q Q Tr H

Q Q Tr H Q Q Q Q

† †

H H

© ª « ¬ ­ ®¯ ¬° °° ° ±²² ² ²³ ³ ³ ³³ ³ ´ ´ (3.37)

Similarly, one gets

 
ΞΞ ΝΝ

11 Q Q Q Q Tr

Q Q Tr

ij kl
ijkl

i j l k

ij kl
ijkl

i k jl

* *
† †

†

µ ¶ · ¸ ¹ ¸ ¹ ¸º »¼ ½ ¼ ½¾ ¿y y y

y y

ÀÀ ÁÁ
Â Â Ã Ã Ã ÃÂ Â Ã Ã Ä (3.38)

and

Tr Q Q Q Q Tr

Q Q

ij kl
ijkl

i j l k

ij kl
ijkl

ik jl

* *
†

Å Æ Ç ÈÉÉ ÊÊ
Ë Ë Ë ËÌ Ì (3.39)

Τhen the matrix of second derivatives is

∇ = ÍÎÏ ÐÑ Ò − ÓÔÕ Ö× Ò
= −

∇ = ÓÔÕ Ö× Ò
Ø2

2

Ù
Q Q

d

S Q Q

* *
*

*

* *

* *

†

†

 

Ú Û Ü ÝÞ ÝÞ Ý Þ Ý Þ Ý Þ Ýß àá â
0 H

H 0

0

0

y G y y 1 y

0 1

1 0

Y

ϑϑ
ϑϑ

ϑϑ

λ
λ

λ λ γ (3.40)

Here the matrix of derivatives has elements ã äP P rs rs rsij kl
Q Q P Q Q, * *

2 å †  ;   or 
æ ç

.and the

matrix G is defined as
 †G y y y ylkij i k jl ki jlTr

è é è é è éê ë ì íî ïð ð ñ ñ ò ó ô
(3.41)
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The map constructed from ∇ ′ =′PP Q Q P P Q Q2 õ
* * *, , , ; , ,† †λ γ

ö ÷ø ù
thus is singular when at

least one vector

V
W

W
W= úûü ýþ ÿ ∈ ��� �� �

 ,  � �
N

2

exists such that

0 H

H 0

0

0

0 1

1 0
V 0

�	
 �� 
 � ��� �� � � ��� �� �
��� �� � �ϑϑ

ϑϑ
∗∗

� �� � � �,

,
,

*
* *

�  !  !  !  " #
E Q QH

† (3.42)

with the density dependence displayed explicitly. In other words if E Q QH * *,γ γ
$ % $ %& #

†  is a

stationary state energy of the augmented Hamiltonian H ' ( ) ** + ,- .
, then the Hessian of

the Lagrangian is singular and the point Q* γ+ , does not lie on a path of constrained

minima of EH .

In Section 3.2 Eqs. (3.15) and (3.16) we noted that the functionals EH  and

E have the same constrained minimizer Q* γ+ , , though the Lagrange parameter function

will be different.  We can go further to note that, as H H V= +0 , where V, defined in Eq.
(3.14), is a local external one-body potential, the matrix representation of H in Eq. (3.37)
only differs from that of H0 by a constant matrix (keep in mind that this is for a stipulated* ). We thus can replace EH  and H in Eqs. (3.31) - (3.40) by E and H0 , then ascertain

whether the conditions are satisfied for Q* γ+ , to lie on a path of solutions for E, again

noting that we have a different Lagrange parameter function 
~

*λ  associated with the

constrained solution Q* γ+ , , and henceϑ λ ϑ λ~
* *

/ 0 1 2
≠ . Using the analogous expression to

Eq. (3.37) one thus can conclude that if E Q Q* *,γ γ
1 2 1 23 4

†  is a stationary state energy of

the augmented Hamiltonian H0 +θ λ γ~
*

1 25 0
, the point Q* γ

1 2
does not lie on a path of

constrained minima of E . It is interesting to note that the test potential 6 7~*

5 0
 has matrix

elements 
~

*λ γ γ δ δy y y y
Y

1 2 1 2 1 28 9
ki ik jl d−

:
; in short, the difference of all possible densities

with the stipulated one plays a decisive role in determining whether the Lagrange
parameter function is a functional derivative.

3.5 V-Representability

The conditions for the existence of paths described in the preceding sections are
intimately connected to the V-representability problem [16]. In fact, as we now shall
show, the use of functionals defined on paths is actually equivalent to restricting attention
to interacting V-representable densities and that the conditions for the existence of paths
are in fact V-representability conditions. The V-representabil ity problem is to specify
conditions that guarantee a density, γ , to be a stationary state density for some
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Hamiltonian H H V= +0 , where V is an external potential in the sense of Eq. (3.14) and
H0  is as defined implicitly in Eq. (3.18).

Theorem:  A density ; <= >
1N  is stationary-state V-representable if the

augmented Hessian ? (defined in Eq. (3.27)) is nonsingular both in a
neighborhood of @A and at BA  itself and ifE Q Q Min E Q Q

N

* *, ,B B C D EF F GH I J IK L M LN O
†

Q

† ,

where E Q Q Tr H D D
QQ

Tr QQ
N N, .†

†

†
 and 

P Q R S T S= =0

Proof

 By assumption, the augmented Hessian U , Eq. (3.27), is nonsingular both at the
constrained minimizer Q* VWX Y

 and in a neighborhood of that Z[ . Therefore, one can

identify the Lagrange parameter function λ γ* ′
\ ]

with 
δ γ

δγ
F ′

^ _
, [where F `a b

is given by

(3.12); its argument in the functional derivative indicates the evaluation function], define

a local one-body potential as V
F

y
y

^ _ ^ _^ _= −
′δ γ

δγ
, and a Hamiltonian H H V= +0 . Then the

functional F E Q QH Hγ γ γ
^ _ ^ _ ^ _c d

= * *, † defined in a neighborhood of ′γ follows by simple

adding to F  the energy contribution from V  [recall Eqs. (3.10), (3.11)]. Immediatelye e f g gFH h i j 0 and therefore kl  is stationary state representable for V
F

y
y

m n o n
o n=

′δ γ
δγ

.

Further if F FH H

p qr rs t s t
 for all other densities associated with the path Q* γ

u v
 then wr is

ground state V-representable.

4. Variation Principle for States Parameterized by Charge-Spin Densities

In this section we apply the constraint γ ∈ x 1N  via parameterization of γ by "one
particle functions" (i.e. functions of one space and one spin variable) in terms of
quadratic expansions of various ranks. This procedure leads to one particle variational
equations that determine the ground state density γ 0  and are equivalent to the HK
equations. We then contrast these equations to those of Kohn-Sham type that arise from
regrouping of the terms in the energy functional and the introduction of an auxil iary state.
Finally we discuss the implications of using y y

z {
 instead of | r

} ~
, the significance of that

choice for symmetry breaking, and the use of auxiliary states more general than single
determinants. Some of these issues have been touched upon in our two previous papers;
details omitted there are treated here.

4.1 Parameterization of γ

Recall from Eq. (3.10) that for well-defined paths the ground state energy is the
solution to the minimization problem
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E F Min FH H
N

0 0
1

= =
∈

γ γ
γ

� � � �� �� (4.1)

The constraint that γ ∈ � 1N  can be handled in analogous fashion to that of DN
N∈ � ,

namely parameterization of γ by elements of L2 Y
� �

.

γ α
ϕ ϕ
ϕ ϕ

ϕ α α= ∈ = ≥∑ ∑N Li
i i

i ii
i i i

i

; ; ;     2 1 0Y
� �

(4.2)

The functions ϕ i i r;1≤ ≤
� �

do not have be orthogonal nor even linearly independent,

though most often it is convenient to choose an orthogonal set.  In the case of DN  we
only used rank 1 expansions.  In contrast, expansions of different ranks are useful in this
case. The correspondence between γ and ϕ i i r;1≤ ≤

� �
is not unique, but as in the case of

D QN  and  a non-redundant parameterization can be found. Once again it is convenient to
work with unnormalized quantities, so we incorporate the expansion coefficients

α i

� �
and the number of particles N into the functions ϕ i

� �
and set

γ ν ν ν ν ν ν νy y y Y
� � � �

= ∈ ≤ =
= =
∑ ∑i i
i

r

i i i i i
i

r

L N N
1

2
1

; ; ;    (4.3)

In terms of these parameter functions, denoted as the vector νν , and F FH Hνν νν
� � � �� �

≡ γ ,

the minimization problem becomes
E Min FH0 =

∈νν
νν� � �� �

(4.4)

The feasible region �  is defined by the constraints

h N

h N

h i j

N i
i

r

ii i

ij i j

νν

νν

νν

� �
� �� �

� � �
� � ��   ¡

¢£ ¤
¤ ¤ ¤

2

1

2

0

0

0;  

(4.5)

and the minimum of Eq. (4.4) can be obtained from the Lagrangian
 

1 r

¥
νν νν

¦ § ¨ §
= − −

≤ ≤
∑F h hH ij ij
i,j

Nλ µ (4.6)

that corresponds to (3.6).  By virtue of
γ ν νy y y

© ª
=

≤ ≤
∑ i i

i r1

  (4.7)

and the chain rule, one has
δ

δν
δ

δγ
δγ

δν
δ

δγ
ν

δ
δν

δ
δγ

δγ
δν

δ
δγ

ν

F F F

F F F

H

i

H

i

H
i

H

i

H

i

H
i

y y y y
y

y y y y
y

© ª © ª © ª © ª © ª
© ª © ª © ª © ª © ª

= =

= =
(4.8)

Notice that Eq. (4.8) defines the action of a local operator 
δ
δγ
FH : « «1 1→ , that has

integral kernel 
δ

δγ
δFH

y
y y¬ ­ ¬ ­

− ′ and acts on ν i to produce the function 
δ

δν
FH

i y
¬ ­ .
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Eq. (4.6) plus the change of variables in Eq. (4.8), gives Euler equations 
δ
δν

δ
δν

® ®
i i

= = 0,

that correspond to the generalized eigenvalue problem

δ
δγ

µ ν λ νFH
i ij j

j

−
¯°± ²³ ´

=
≤ ≤
∑

1 r

(4.9)

and its complex conjugate. Exact (but, in several cases, not known explicitly) component
potential functionals follow from functional derivatives of Eq. (3.10):
δ
δγ

δ
δγ

δ
δγ

δ
δγ

δ
δγ

δ
δγ

F F F F F FC T S XC eN ext, , , ,  and . All these derivatives are evaluated on the same

pathDN
* γ

µ ¶
, which again, leads to the definitions of 

δ
δγ

δ
δγ

δ
δγ

F F FT S XC, and  as local

potentials in the one-particle Eq. (4.9) for the density.

The minimization problem, Eqs. (4.4) and (4.5) and the resulting Euler Eq. (4.9)
are for determining the density γ 0  that corresponds to the ground N-particle

stateDN
* γ 0

µ ¶
in terms of the parameterization νν  of γ  and hence should be thought of as a

reformulation of the Hohenberg-Kohn equations. Thus, as noted, Eqs. (4.5) and (4.9) are
not conventional Kohn-Sham equations but an exact one-particle form of the Hohenberg-
Kohn variation procedure with Hohenberg-Kohn potentials in the definition of the

effective one-particle Hamiltonian 
δ
δγ

µFH −
·¸¹ º» ´

.  Note in particular that very few

restrictions were placed on the form of the density expansion Eq. (4.3) save for its overall
normalization.  The parameterization of γ , Eq. (4.7), can be chosen to have any rank and

to be in terms of any functions that belong to L2 Y
µ ¶

that satisfy Eq.(4.5) and then be used

subsequently in the variational equation (4.9).

4.2 Kohn-Sham Type Procedures.

In contrast Kohn-Sham procedures are based on a strategy that introduces a
partitioning and regrouping of the potential terms (functional derivatives) in Eq. (4.9)
based on model auxil iary states that are related to the expansion Eq. (4.7).  Examples
include the treatment of generalized Kohn-Sham equations by Levy and Perdew[11].

Part of the incentive for this regrouping is found in the highly non-linear
dependence of the variational equations upon the density. That dependence necessitates
iterative solutions.  Their convergence and stabil ity obviously depend on the choice of
starting potentials (which are density dependent). As the potentials are determined by
states associated with densities, it is expedient to incorporate as much information as
feasible about the form of solution states in those potentials. The other motivation for
regrouping is to have as many terms as possible that are both large in magnitude (on
physical grounds) and straightforward to compute.  One strategy for such regrouping is to
rearrange the sum of derivatives into combinations related to a well-studied type of
quantum state. The choice of such an auxil iary state is dictated by a balance between (a)
simplicity and (b) similarity of the auxil iary state to the solution state. In the standard
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Kohn-Sham procedure (based on uncorrelated auxiliary states) most emphasis is placed
on point (a), while for generalized Kohn-Sham formulations (based on correlated
auxil iary states) the emphasis is more on (b).

For the case of a non-degenerate ground state the standard Kohn-Sham auxil iary
state is well-characterized.  (We put aside the degenerate case for now. It introduces
issues of degeneracy at the Fermi level, fractional occupation and continuous non-integer
electron number, etc. In many treatments those complications seem entangled with
incompatible assumptions about single determinantal KS states.) For non-degenerate
ground states, the standard KS auxil iary state is a real single determinant of singly
occupied orbitals; any conventionally doubly occupied orbitals simply occur twice in the
determinant.  The KS determinant is an Independent Particle State (IPS).  Its form is
appealing because it explicitly incorporates anti-symmetry and N-representable, and
because it is easy to manipulate.

Ordinarily, however, the KS procedure is developed in terms of the real-space
charge density ρ , not the charge-spin density γ . A pertinent task therefore is to
determine the kind of KS theory that arises from parameterization via γ . After
developing such a γ -based theory in this Section, we will analyze its relationship to the
more familiar theory based on ρ in Section 4.3.

Consider therefore ¼ NIP γ
½ ¾

, the set of all IPS corresponding to a given γ , and a

rank N expansion of γ
γ ϕ ϕ

ϕ ϕ δ

y y y
½ ¾

=

=
≤ ≤
∑ i i
i N

i j ij

1

 
(4.10)

It is possible to restrict the form of the expansion in Eq. (4.10) by choosing
ϕ i i Ny

½ ¾¿ À
∈ ≤ ≤

Á
;1  as is usually done in standard KS theory for ρ r

Â Ã
 or by setting

ϕ ϕ2 2 1 21i i
Ni= ≤ ≤− ;

Ä Å
 for even N or both but we will not impose either restriction. The N

functions in Eq. (4.10) determine the first order reduced density operator (FORDO; recall
Appendix B) of some N particle IPS.  In general many such expansions are possible for a
given γ , so the correspondence between a fixed γ  and IPS's is one to many.  However,
in general there is at least one pure IPS that corresponds to any given γ , even if γ comes
from an ensemble or highly correlated state [6].

The functional that is characteristic of KS procedures is an IPS kinetic energy, to
wit

  T Min Tr TD E DKS
D

IP
N

T IP
N

IP
N

NIP

Æ ÆÇÈ É Ê Ë Ì ÍÎ ÏÐ ÑÒ ÒÓ ÔÕ (4.11) 

where ET  is defined in Eq. (3.11) and DIP
N

◊ γ
Ö ×

is the N-particle IPS that minimizes this

constrained optimization. If the conditions described in sections 3.4 and 3.5 are satisfied
those minimizers form a pathDIP

N
◊ γ

Ø ×
in Ù N . It is imperative to recognize that, in general,

the pathDIP
N

◊ γ
Ú Û

is completely different from the path DN
* .γ

Ú Û
 If we had applied other
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restrictions to Eq. (4. 11), e.g. different rank expansions, different normalization for the
functions, etc., yet other paths would have resulted.

The definitions in Eq. (3.11) can be transformed to KS form by regrouping and
defining difference functionals between exact and independent particle paths. In so doing
it is important to keep in mind that that the HK kinetic energy and XC terms involve a
system-dependent path DN

* γ
Ü Ý

in N-particle state space whereas DIP
N

◊ γ
Ü Ý

involves the

kinetic energy of the IPS alone. Let

   ÞF T F E D E DT KS T T IP
N

T
Nγ γ γ γ γ

ß à á à á à á àâ ã ä åæ ã
= − ≡ −◊ * (4.12)

then
F T FT KS Tγ γ γ

ä å ä å ä å
= − ç (4.13)

The KS XC energy then is defined as
F F FXC KS XC T, γ γ γ

ä å ä å ä å
= − ç (4.14)

which is equivalent to
F F T FT XC S XC KSγ γ γ γ

ä å ä å ä å ä å
+ = + , (4.15)

and thus the regrouping
F T F F F FH KS XC KS C S Vγ γ γ γ γ γ

ä å ä å ä å ä å ä å ä å
= + + + +, (4.16)

By construction, these KS functionals are well-defined and give well-defined
functional derivatives, so their variation proceeds as in the preceding section and leads to
standard KS equations strictly analogous with Eqs. (4.4), (4.5), and (4.9).  The benefit of
this formulation over the standard one is at least two-fold.  It makes clear that the XC KS
term is defined with the help of two distinct paths and that those paths are essential to the
determination of conditions for the existence of the functional derivatives upon which the
Euler equation (4.10) depends.

4.3 Parameterization in terms of è r
é ê

versus ë y
ì í

Conventionally both the HK and KS theories are based on the charge density ρ
and not the more general charge-spin density γ . The standard formulation of spin density
functional theory [4] extends the parameterization to include Sz-densities i.e. two

positive spatial components ρ ρα βr r
î ï î ïð ñ

, . The full spin-density also has been

considered more than once [5] in the form of three spatial components

ρ ρ ρα αβ βr r r
ò ó ò ó ò óô ñ

, , . However, in all earlier treatments (as far as we are aware) the

alpha-beta cross term is dropped, perhaps because it is not a positive function. In contrast,
the present formulation in terms of the full spin density is described completely in terms
of γ y

ò ó
, which is positive. When describing systems that have non-trivial spin properties

a theory based on ρ  alone is inconvenient as it incorporates those spin properties
implicitly in difficult-to-characterize potentials rather than explicitly in terms of the spin
properties of γ . A general spin density formulation of DFT, based on positive densities,
thus should treat γ as the basic parameter rather than ρ . As suggested by the remarks
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about the alpha-beta cross term (and by the form of the KS kinetic energy), the
appropriate object to consider is the FORDO (again, recall Appendix B).

The kernel of a FORDO can be expanded in terms of normalized functions as
D Dij i j

i j r

1 1

1

y y y y,
,

′ = ′
≤ ≤
∑

õ ö õ ö õ ö
ϕ ϕ (4.17)

where the set of functions of charge-spin variables ϕ i i r;1≤ ≤
÷ ø

is a complete

orthonormal basis for ù 1 . These basis functions always can be written as a product of
orthonormal functions of spatial variables and orthonormal functions of spin variables

ϕ χ α ξ

ϕ χ β ξ
i i

i i

s r

s r

y r

y r

ú û ú û ú ûú û ú û ú û= ≤ ≤ =

= ≤ ≤

;

;

  1 i

  +1 i
2 (4.18)

so that Eq. (4.18) becomes

D D

D D

D

ij i j
i j s

ij i j ij i j
i s

s j s
s i s

j s

ij i j
s i j s

1 1

1

1 1

1
1 2

1 2
1

1

1 2

y y r r

r r r r

r r

,
,

,

′ = ′ ′

+ ′ ′ + ′ ′

+ ′ ′

≤ ≤

≤ ≤
+ ≤ ≤

+ ≤ ≤
≤ ≤

+ ≤ ≤

∑

∑∑

∑

ú û ú û ú û ú û ú û
ú û ú û ú û ú û ú û ú û ú û ú û

ú û ú û ú û ú û
αα

αβ βα

ββ

χ χ α ξ α ξ

χ χ α ξ β ξ χ χ β ξ α ξ

χ χ β ξ β ξ                                                      

(4.19)

In turn this expression allows us to define reducible, (with respect to the action of the
spin group SU(2)), spin component kernels as

D D

D D

D D

D D

ij i j
i j s

ij i j
s i s

j s

ij i j
i s

s j s

ij i j
s i j s

αα αα

αβ αβ

βα βα

ββ ββ

χ χ

χ χ

χ χ

χ χ

1 1

1

1 1

1 2
1

1 1

1
1 2

1 1

1 2

r r r r

r r r r

r r r r

r r r r

,

,

,

,

,

,

′ = ′

′ = ′

′ = ′

′ ′

≤ ≤

+ ≤ ≤
≤ ≤

≤ ≤
+ ≤ ≤

+ ≤ ≤

∑

∑

∑

∑

ú û ú û ú û
ú û ú û ú û

ú û ú û ú û
ú û ú û ú û

    

=

(4.20)

and irreducible (that correspond to one and three dimensional irreps of SU(2)
respectively) spin component kernels as

P D D

Q D D

Q D D

Q
i

D D

r r r r r r

r r r r r r

r r r r r r

r r r r r r

, , ,

, , ,

, , ,

, , ,

′ = ′ + ′

′ = ′ + ′

′ = ′ − ′

′ = ′ − ′

+

−

ú û ú û ú ûü ý
þ ÿ þ ÿ þ ÿ� ý

þ ÿ þ ÿ þ ÿ� ý
þ ÿ þ ÿ þ ÿ� ý

1

2
1

2
1

2
1

2

1 1

1
1 1

0
1 1

1
1 1

αα ββ

αβ βα

αα ββ

βα αβ

(4.21)

The FORDO kernel therefore is expressible as
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D

P Q Q Q

1

00 1 11 0 10 1 1 1

y y

r r r r r r r r

,

, , , , , , , ,

′ =

′ ′ + ′ ′ + ′ ′ + ′ ′+ − −

� �
� � � � � � � � � � � � � � � �

 Θ Θ Θ Θξ ξ ξ ξ ξ ξ ξ ξ
(4.22)

where the spin kernels are defined as

Θ Θ

Θ Θ

00 10

11 1 1

ξ ξ α ξ α ξ β ξ β ξ ξ ξ α ξ α ξ β ξ β ξ

ξ ξ α ξ β ξ β ξ α ξ ξ ξ α ξ β ξ β ξ α ξ

, ; ,

, ; ,

′ = ′ + ′ ′ = ′ − ′

′ = ′ + ′ ′ = ′ − ′−

� � � � � � � � � �� � � � � � � � � � � �� �
� � � � � � � � � �� � � � � � � � � � � �� �  

  
(4.23)

The full charge-spin density in terms of these irreducible spin component kernels is
γ ξ ξ ξ ξ

ξ ξ ξ ξ

y r r r r

r r r r

� � � � � � � � � �
� � � � � � � �= +

+ +
+

− −

P Q

Q Q

, , , ,

, , , ,

Θ Θ

Θ Θ
00 1 11

0 10 1 1 1                                     
(4.24)

while the charge density is given by

ρ γ ξr y r r
� � � � � �

= =
�

d P , (4.25)

Clearly ρ ∈ ⊂
�

1 1
3

N L
� �	 


, hence could be used to index N-particle states in similar

manner to γ , as was the case in the original HK formulation of DFT. As we have already
remarked, however, the Q+1  and Q−1  contributions in (4.24) do not appear in ordinary
spin-density functional theory .

The energy functional in terms of ρ  is related to the functional in terms of γ by
~

* #F Min F Min E D E DH H H
N

H
N

N N

ρ γ γ ρ
γ ρ γ ρ

� � 
 �� � � �� �� � � �� �� � � �= = =
∈ ∈

� �
1 1

(4.26)

where � 1N dρ γ ρ γ ξ
�  !  !  " #

= = $; r y  and DN
# ρ

% &
is the constrained minimizer of the

functional E DH
N

N* ;γ γ ρ
% &' ( ) *

 ∈ + 1 . If the conditions discussed previously in Sections 3.4

and 3.5 are satisfied Eq. (4.26) determines a path DN
# ρ

) *
 in , N . Once again, such paths in

general are distinct from both the HK pathsDN
* γ

- .
and the KS paths DIP

N
◊ γ

- .
.

The values of component functionals referring to one-particle, spin- free
observables have a constant value on the set / 1N ρ

- .
.  This fact is one of the appealing

properties of the KS kinetic energy for example:
T TKS KS Nγ ρ γ ρ

- . - . - .
= ∀ ∈  / 1 (4.27)

This property does not hold in general for functionals associated with spin-free two-
particle observables nor for spin dependent observables or external magnetic fields.

4.4 Spin-symmetry and Symmetry Breaking

In the case of a ρ -based DFT it is always possible, even when spin is involved
nontrivially, to expand in terms of real functions of three spatial variables and in theory
obtain an exact ground state energy, while for γ it is not possible to restrict the functions
thusly. In addition the XC functional and potential in theρ case cannot contain an explicit
dependence on the spin density, as that has been factored out of γ in obtainingρ . Thus
the way that the ρ -based XC potential takes account of spin is very obscure except in the
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simplest of configurations.  Recall the earlier remark that conventional spin DFT omits
(or else must attempt to reparameterize in an obscure way) two of the contributions in
(4.24).  As the XC potentials are in general unknown and must be approximated by
physical and mathematical experience, most practitioners implicitly use the properties of
γ , at least in some partial form.  This distinction has not always been made clear in the
DFT literature and has led to ambiguity, especially in discussions of symmetry breaking.
For states with non-trivial spin characteristics, the form of parameterization assumes an
important role with regard to symmetry breaking, notably when some of the potentials are
not known exactly, as is invariably the case.  In the discussion to follow, we remark on
the ways an exact potential becomes a potential that is “not known exactly” by virtue of
its exact spin-symmetry being different from the spin-symmetry of the problem to which
it is applied.

In both the HK and KS cases it is possible to consider the minimization problem
by means of functionals of ρ  parameterized in terms of expansions of the type

ρ χr r
0 1 0 1

=
=
∑ i
i

N

2

1

2

(4.28)

where N N
2 2=  for N even and   = +N 1

2 for N odd.  The functions 2  in general are

different from those in (4.20).  In the KS procedure the functions χ i
Ni;1 2≤ ≤

3 4
can be

identified with the occupied orbitals of the KS IPS and a complementary set

χ i
N i s; 2 1+ ≤ ≤

5 4
with the unoccupied ones.  However only in the special case of a

ground state, DN
# ρ0

6 7
, that is of the Fukutome [17] time reversal invariant singlet class

can these orbitals be used in the natural expansion of its associated FORDO as

D P n ni i i
i

s

i i# # ;1
0 0

1

0 1ρ ρ χ χ α α β β χ
8 7 8 7 9 : ; <

= = ⊗ + ∈ ≤ ≤
=
∑    r = > (4.29)

In those cases for which the ground state is not a time reversal invariant singlet, the
FORDO does not equal P# ρ0

? @
and other components defined by Eq. (4.21) enter into its

expansion. In these cases the N
2  real functions parameterizing ρ0 cannot be identified

with the functions that occur in the natural expansion of the FORDO.  However they still
can be used to define an auxil iary KS IPS that corresponds to a real restricted determinant
(i.e., one that contains only doubly occupied, real-valued orbitals). If the corresponding
functionals 

~
,
~

,
~ ~

,T F F FKS XC KS S Vρ ρ ρ ρ
? @ ? @ ? @ ? @

,   were known exactly, this parameterization

would lead to the exact ground state energy. This statement is the content of the original
HK argument. However, if the functionals are to be approximated, it is possible to obtain
better approximations to such ground states by letting χ i i s;1≤ ≤

A B
be complex-valued

functions and considering the more flexible, but equally valid, expansion

ρ χr r
C D C D

=
=
∑ i
i

N

2

1

2

(4.30)



24

in the variational process. The complex valued functions appearing in this expansion can,
moreover, be identified with the natural orbitals of more general singlet states.

In order to use expansions in terms of functions that determine first order reduced
density operators that belong to a general Fukutome class, one needs to consider complex
valued functions that have the form of General Spin Orbitals (GSOs). Thus to construct a
KS IPS that belongs to a general Fukutome class we consider the following expansion of
the charge-spin density

γ ν νy y y
E F E F E F

= ∈
=
∑ i
i

i

N

2

1

2

;  G (4.31)

where the "occupied" and "unoccupied" functions ν i i r;1≤ ≤
H I

associated with this

expansion belong to a particular Fukutome class. Suppose next that an approximation to
FXC KS,  were to be constructed for that class. Symmetry breaking would occur if a lower

ground state energy could be achieved using that approximate functional and allowing the

parameter functions ν i
Ni;1 2≤ ≤

J K
, which determine the KS IPS, to belong to a different

Fukutome class. Of course one would not do this deliberately, but clearly it could occur
for an approximation constructed without explicit consideration of the Fukutome class.

If one restricts attention to the Time Invariant Closed Shell (TICS) singlet class
γ ρ= Θ00  for the parameterization of γ , one is essentially working with ρ . However, the

functionals are based on the general form of γ not ρ , e.g. FXC KS, γ
L M

not 
~

,FXC KS ρ
L M

.  If we

limit the parameterization of γ in this way we should write the functionals as, for

example, FXC KS, γ
γ ρ

L M
= Θ00

, which is the KS XC functional in the γ formulation of DFT,

but with γ restricted to be in the Fukutome TICS class. In this case, the KS determinant

can be formed from the real N
2  expansion of γ ρ= Θ00 , and thus is a determinant

formed by real orbitals with occupation numbers 1 or 2. This constraint has the effect of
leading to an upper bound to the ground state energy, even in the case of exact
functionals, if the ground state is not of TICS symmetry.

This symmetry classification has important implications for the adiabatic
connection formulation of the KS XC potential [18]. In that treatment, the functional is
found from a Pauli coupling constant integral which usually is said to connect from “the
non-interacting ground state”, i.e. the KS determinant, to the fully interacting ground

state. If FXC KS, γ
γ ρ

L M
= Θ00

is used then, in general, the coupling constant integral will not

connect from the ground state of the non-interacting system to the fully interacting
ground state, but rather to an upper bound to the exact ground state.

4.5 Expansions of Rank ≠ N
2

In the preceding discussion we expanded the density in terms of N
2 functions,

which belonged to a Fukutome class, an expansion that was particularly suited for the
construction of a KS auxil iary IPS and the use of the re-grouped exchange correlation
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functional FXC KS, γ
N O

. This expansion also could be used in solving the HK equation

directly without the use of an auxil iary state and such a potential.  There is however no
compell ing mathematical reason to have expansions of rank N

2  or to use IPS auxiliary

states. The densityγ can be parameterized as an expansion of any rank, m = number of
nonzero ni , in terms of functions belonging to a suitable Fukutome class as

γ ψ ψ ψ ψ δy y y
N O N O N O

= ∈ ≤ ≤ = =
= =
∑ ∑n n N n Ni i
i

m

i i i j ij i
i

m
2

1 1

; ; ; ;  0   
P

(4.32)

The reader should note that the limit on each of the positive numbers (weights) ni

Q R
is N

not 1, as would be the case if the weights were occupation numbers. These numbers also
can be folded into the functions ψ i

Q R
to produce functions ν i

Q R
normalized to ni

Q R
i.e.

ν ν δi j i ijn=  as we did in Eq. (4.3). The functions and weights ψ i in,
Q R

can be used to

parameterize γ in HK type equations or, in the case 0 1
S S S S

n i ri ; ; 1
T

 number of non-

zero n Ni > U , they can be used to define a correlated auxiliary state for a generalized KS
type procedure. A re-grouped exchange correlation potential based on such a state would
contain more information about the final N-particle state than an independent particle
auxil iary state and thus might speed up iterative solutions of the variational equations. In

the extreme case of m= 1 one can even express the density as ρ ωω= , where ω ρ=
1
2 (one

can take any branch of this function) . This factorization leads to the Pauli potential [19],
a particularly DFT scheme that we shall discuss elsewhere.
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Appendix A: Glossary of Mathematical Symbols

V
N The convex set of N-particle statesW
N γ

X Y
The set of N-particle states that produce the same
density γZ

N1 The set of First Order Reduced Density Operators
(FORDO's)Z

NIP γ
[ Y

The set of Independent Particle FORDO's that
produce the same density ρ\ ]

1
N

^ _
The space of trace class operators acting in the
Hilbert space ̀ Na N The Hilbert space of pure N-particle fermion
states. It is an N-fold antisymmetric tensor
product of the Hilbert space of pure one-particle
states.

D N N-particle state operator, if it is not a projector
onto a 1-dimensional subspace it represents a
mixed N-particle state
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b c
2

N
d e

The Hilbert space of Hilbert Schmidt operators
acting in f Ng N Fiber Bundle with base space h 1N  and fibersi

N γ
j k

l Lagrangians
r

N

mno pq r
Combinatorial coefficient "r choose N"

γ y
s t

Charge-spin density as a function of space and
spin variables r,ξ

s t
Y u v3 2×
L1 Y

w x
Linear normed space of absolutely integrable
complex-valued functions of 3 real and 2
complex variables.

L2 Y
y x

Hilbert space of square-integrable complex-
valued functions of 3 real and 2 complex
variables.

ΞN
1 Linear map from the space of bounded N-particle

operators to the space of absolutely integrable
complex-valued functions of the variables y.

Φ y
y x

Continuous Fermi field annihilation operator that
depends on the charge-spin variable y.

a a†
i i,

z {
Discrete Fermi field annihilation and creation
operators| }

1
1

N

NKer

~ �
Ξ

Linear space of equivalence classes of Trace
Class operators. The operators are equivalent if
there difference lies in the kernel of ΞN

1�
1N Positive cone of charge-spin densities derived

from N-particle states.
EH Linear energy functional based on the

Hamiltonian H; it acts on the space of N-particle
Trace Class operators.

ET Linear energy functional based on the Kinetic
Energy operator.

EXC Linear energy functional based on the XC terms.
FH Nonlinear energy functional based on the

Hamiltonian H; it acts on the space of absolutely
integrable complex valued functions of the
variables y.

DN
* γ

� �
Path of N-particle states; each state on the path
corresponds to a density γ  and is the minimum
energy state for that density.

DIP
N

◊ γ
� �

 Paths of IP N-particle states.

Q* γ
� �

Path of Hilbert Schmidt operators
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ζ
N

Equivalence classes of N-particle Trace Class
operators that all map to the same function ζ.

ρ
N

Set of N-particle Hilbert-Schmidt operators that
produce N-particle states associated with the
same charge-spin density.�
The complex numbers

FORDO First Order Reduced Density Operator

HK Hohenberg-Kohn
KS Kohn-Sham
NGSO Natural General Spin Orbitals�

The real numbers

Appendix B: First Order Reduced Density Operator

The FORDO is defined by a linear contraction map, CN
1 , given by the following

C

D C D

D Tr a a D

D D a a

N
N

N
N

ij j i
N

ij i j
i j

r

1
1 1

1

1 1

1

1 1

1

:

,
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� �

� �
→

=

=

=
=

∑

†

†

 (B.1)

The integral kernel of the FORDO is given by 

D Tr D

D D d d

N1
1 2 1

1 1
1 1 2 1 2

y y y y

y y y y y y

2

2

Y Y

,

,
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=
×

� � Φ Φ

Φ Φ

†

† (B.2)

and the density is thus the diagonal of this kernel, i.e. γ y y y
� � � �

= D1 ,
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