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Abstract

Molecular Hamiltonians are constituted by momentum operators (e.g. kinetic energy and inter-

action with electro-magnetic radiation), local potential operators (e.g. electron-electron coulomb,

electron-nucleus and electron-external field interactions) and spin operators. In general the effect

of transformations that generate states from a reference state is to destroy this form.

Here it is shown how one can generate all pure states by the action of a commutative semigroup of

transformations that are diagonal in the space-spin coordinate representation that do not destroy

this form and thus maintain the physical interpretability of effective Hamiltonians.

Using such transformations we formulate an approximation theory that has physical interpreta-

tion at all orders.

1



Contents

I. Introduction 3

II. Generation of States 5

A. Resolution of the Identity 5

B. Hamiltonian 6

C. Pure State Generation 7

III. Effective Hamiltonian 9

IV. Approximations 11

V. Commutative versus Noncommutative Transformations 14

VI. Examples 16

A. Approximations indexed by {1, · · · , 1} 16

B. Approximations indexed by {2, · · · , 2} 19

VII. Summary 21

VIII.Acknowledgements 22

A. Subspaces of Operators 22

B. States 23

C. Discrete versus Continuous 23

D. Transformation of the Kinetic Energy Operator 25

1. Transition Amplitudes 25

2. Expectation Values 27

E. Symmetric Kernels 28

F. Transition Amplitudes and Expectation Values wrt IPS 29

G. Kinetic Energy Expansion in the {2, . . . , 2} Approximation 30

2



References 33

I. INTRODUCTION

The Hamiltonian operator characterizes a physical system by describing all the interac-

tions effecting it and determines which states are consistent with these interactions. In-

variably physical Hamiltonians (as distinct from model Hamiltonians) are formulated in the

space-spin coordinate representation, which reflects the fact that the properties of natural

systems are most tangibly described primarily in terms of spatial coordinates and geometric

images in a local pointwise fashion, i.e. at any given instant the momentum and potential

energy (including the potential energy of interaction with like particles) associated with a

specific particle is expressed in terms of a single spatial coordinate. Once the Hamiltonian

has been constructed one can form discrete matrix or even other continuous representations

by the introduction of proper bases (constituted by vectors that belong to the Hilbert space)

or generalized bases (constituted by vectors that do not belong to the Hilbert space). How-

ever in order to obtain the physical content of such representations one invariably relates it

back to the coordinate representation.

Nearly all molecular quantum mechanical approximations to Hamiltonians and/or states

are formulated in the context of proper bases and when transformed back to the coordinate

representation produce non local effective Hamiltonians, which in general makes their direct

physical interpretation somewhat difficult. Consequently it would be convenient if the ap-

proximations could be expressed directly in the coordinate representation, in which they do

have a clear physical interpretation. An added benefit of such a formalism would be that

approximations could rigorously be suggested by certain properties of the specific system

under study.

The most widely used approximation for molecular systems is the Self Consistent Field

(SCF) method. One of the most appealing properties of this method is that it is based on an

Independent Particle State (IPS) ansatz which permits one to give a physical interpretation

to all terms in the variational expression and thus producing a pictorial model of processes

involving atoms and molecules. A major computational asset of this method is that it does

not involve two particle transformations thus allowing the Hamiltonian to be expressed in

terms of a fixed atomic orbital basis at all stages of the optimization procedure i.e. the form
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of the Hamiltonian is preserved at all steps. This permits one to introduce approximations

to the Hamiltonian while still maintaining the physical meaning of the various terms e.g.

the coulomb operator can be approximated by ignoring interactions between distant parts

of the molecule and core interactions replaced by pseudo potentials.

The optimal Independent Particle State (IPS) is found by minimizing the expectation

value of Hamiltonians with respect to (wrt) the parameters characterizing these states. This

expectation value can be alternatively viewed as the expectation value of the exact or a

fixed approximate Hamiltonian wrt a variable IPS or the expectation value of an effective

Hamiltonian that depends on the variational parameters wrt a fixed reference IPS. However

in latter case one often loses the ability to clearly physically interpret the various terms in

the effective Hamiltonian e.g. terms that refer to local atomic centers become delocalized.

When one is considering correlated approximations beyond the SCF method this latter

way of viewing the energy expectation value is frequently more desirable, even taking into

account the loss of direct physical interpretability, as it focuses on the most effective way of

computing the energy expression e.g. consider the couple cluster method.

The variation over trial states can be formulated in terms of transformations, that fre-

quently form a commuting set, acting on a fixed reference state. Even when the set of trans-

formations commute they invariably do not commute with their adjoints, nor with terms

in the Hamiltonian and hence produce rather complicated effective Hamiltonians. There

is however a way of combining the desirable features of physical interpretability and fixed

Hamiltonian form by generating all pure states from a fixed independent particle reference

state by transformations that

• are diagonal in the space-spin coordinate representation

• form self adjoint commuting sets

• produce effective Hamiltonians that maintain the form of the exact Hamiltonian i.e. are

expressed in terms of momentum and local potentials

• maintain the physical interpretability of all terms in effective Hamiltonians

• allow one to express the energy of any state in terms of the expectation value of an effective

Hamiltonian wrt a given reference state
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• produce approximations that have a direct physical interpretation.

In this article we describe how pure states can be generated from a reference state by the

action of abelian semigroups of operators [1], which allows one to express the expectation

value of all observable in any state in terms of ”dressed” observables in the reference state.

Utilizing this construction and considering inclusive sequences of semigroups we develop an

approximation theory. Our construction is based on the properties of generalized bases,

in particular the bases formed by the generalized eigenvectors of the coordinate operator.

In section II we describe the abelian semigroups associated with this bases and prove that

one can generate all pure states from a reference state using these semigroups. In section

III we display the effective Hamiltonian generated by the action of this semigroup on the

system Hamiltonian and in section IV we develop an approximation theory based on this

construction, to be followed in section VI with some examples and a summary in section

VII.

II. GENERATION OF STATES

Generalized bases of Hilbert spaces have been a cornerstone of quantum mechanics since

their introduction by Dirac [2], since their inception they have been given a firm mathemat-

ical foundation in the context of Distribution theory [3], Group theory [4] and Topological

Vector Spaces [5]. A full discussion of their properties can be found in [6] and they are

closely related to Rigged Hilbert spaces introduced by [7]. In this section we prove that

an abelian semigroup formed by operators that are diagonal in the space-spin generalized

eigen basis generates all pure states form a cyclic [1] reference state. It is essential to con-

sider abelian semigroups and not abelian groups as the latter can only maximally generate

a proper subset of states from a reference state i.e. cyclic reference states do not exist for

these groups.

A. Resolution of the Identity

The identity operator in B (HN
)

(see Appendix A for the definition of operator spaces)

can be resolved as an integral of the projectors onto the generalized eigenvectors
{∣∣zN

〉}
of
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the N -particle space-spin position operator as

I =

∫ ∣∣zN
〉 〈

zN
∣∣ dzN (1)

where
∣∣zN

〉
= |z1 · · · zN〉 is the antisymmetric tensor product of N one particle generalized

eigenvectors {|zj〉 |1 ≤ j ≤ N} and zj ≡ (rj, ξj) for a spatial position rj and spin vector

ξj. The wavefunction Ψ
(
zN

)
of any pure state |Ψ〉 〈Ψ| (see Appendix B for a discussion of

states) is given by

Ψ
(
zN

)
=

〈
zN |Ψ〉

(2)

and the state vector |Ψ〉 has the expansion

|Ψ〉 =

∫ ∣∣zN
〉 〈

zN |Ψ〉
dzN (3)

B. Hamiltonian

The molecular spin free Hamiltonian for a system of N -electrons and M -nuclei at fixed

positions {Rj|1 ≤ j ≤ M} is essentially local (i.e. all the terms are point interactions or

are properties of a specific point), and is defined through its tangibly physical space-spin

coordinate representation in atomic units as

H =
∑

1≤j<k≤M

ZjZk

‖Rj −Rk‖

+

∫ { ∑
1≤j≤N

Vext (rj) +
∑

1≤j<k≤N

1

‖rj − rk‖−

∑
1≤j≤M
1≤k≤N

Zj

‖Rj − rk‖ −
∑

1≤j≤N

‖pj (rj)‖2





∣∣rN
〉 〈

rN
∣∣ drN (4)

where nuclei j has atomic number Zj and is at the position Rj, rj is the position of electron

j that has momentum pj (rj) = ∇rj
−Aext j (rj) , where Aext j (rj) is the sum of all external

vector potentials acting on particle j and Vext (rj) is the sum of all external scalar potentials.

For future reference we denote the one and two particle potentials V1 and V2 as

V1 =

∫ ∑
1≤j≤M
1≤k≤N

{
− Zj

‖Rj − rk‖ + Vext (rk)

} ∣∣zN
〉 〈

zN
∣∣ dzN

V2 =

∫ { ∑

1≤j<k≤N

1

‖rj − rk‖

}
∣∣zN

〉 〈
zN

∣∣ dzN (5)
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and a constant internuclear interaction term

H0 =
∑

1≤j<k≤M

ZjZk

‖Rj −Rk‖ . (6)

. By introducing a proper basis {|ϕj〉} for the one particle Hilbert space H1 one produces

a matrix representation of H. If this basis is constituted by localized atomic orbitals this

matrix representation still has a physically recognizable content but if the functions {|ϕj〉}
are delocalized over all centers it is hard to discern specific physical interactions and prop-

erties. In all cases the space-spin coordinate is the defining representation that determines

the matrix one.

The energy E (Ψ) of a state |Ψ〉 is given by the expectation value

E (Ψ) =
〈Ψ|HΨ〉
〈Ψ|Ψ〉 (7)

where

〈Ψ|HΨ〉
〈Ψ|Ψ〉 =

∑

1≤j<k≤M

ZjZk

‖Rj −Rk‖ + 〈Ψ|Ψ〉−1





∫ ∑
1≤j≤M
1≤k≤N

−ZjΨ
(
zN

)∗
Ψ

(
zN

)

‖Rj − rk‖ dzN

−
∫ N∑

1≤j≤N

[(∇rj
−Aext j

(
zN

))
Ψ

(
zN

)∗] • [(∇rj
−Aext j

(
zN

))
Ψ

(
zN

)]
dzN

+

∫ ∑

1≤j<k≤N

Ψ
(
zN

)∗
Ψ

(
zN

)

‖rj − rk‖ dzN +

∫
Vext

(
zN

)
Ψ

(
zN

)∗
Ψ

(
zN

)
dzN

}
(8)

the coordinates zN ≡ z1 · · · zN ≡ (r1, σ1) , · · · , (rN , σN) and the normalization is

〈Ψ|Ψ〉 =

∫
Ψ

(
zN

)∗
Ψ

(
zN

)
dzN (9)

C. Pure State Generation

In the coordinate representation, all pure states (unnormalized, see Appendix B) in HN

can be produced from a reference pure state, |Ψref〉, that has a wavefunction

〈
zN |Ψref

〉
= %

(
zN

)
eiS(zN) (10)

that is non zero a.e.[1] by the transformations

|Ψ (ν, ω)〉 = T̆ (ν, ω) |Ψref〉 = ν̆Neiω̆N |Ψref〉 (11)
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where the operators T̆ (ν, ω) , ν̆N and ω̆N are diagonal in the space-spin basis
{∣∣zN

〉}
and

are given by

ν̆N =

∫
ν

(
zN

) ∣∣zN
〉 〈

zN
∣∣ dzN ∈ B (HN

)
(12a)

ω̆N =

∫
ω

(
zN

) ∣∣zN
〉 〈

zN
∣∣ dzN ∈ B (HN

)
(12b)

and form a commuting set, which we denote as Cc. dA notational aside: In this article when

it is important to distinguish between an operator belonging to B (HN
)

and its integral

kernel, we denote the operator by T̆ and the integral kernel by T
(
zN

)
or T

(
zN , z′N

)
, if it

not important to distinguish between we just use T c.
The strong closure [3] of the space Cc of diagonal integral operators that map HN → HN

is the space of integral operators with symmetric integral kernels
{
T

(
zN

)}
that belong to

the Banach space L∞
(
ZN

)
[1], and form a semigroup which is in particular a w∗-algebra.

[8]. The following extract from Thirring [8] should be noted:

L∞
(
ZN

)
, considered as multiplication operators on L2

(
ZN

)
is maximally

abelian. Every function in L2

(
ZN

)
that is non zero a.e. is a cyclic vector.

Functions that vanish on some set
[
ΩN

]C
= ZN − ΩN ⊂ ZN form invariant

subspaces. Thus L∞
(
ZN

)
is reducible and not a factor [1].

One can see that T (ν, ω)
(
zN

)
(the integral kernel of T̆ (ν, ω)) is a parameterization of a

representation of an abelian w∗-algebra, A, on L2

(
ZN

)
by L∞

(
ZN

)
. This representation is

reducible as L2

(
ZN

)
contains the following invariant subspaces

L2

(
ΩN

)
=

{
Ψ

∣∣∣∣Ψ
(
zN

)
= 0 if zN /∈ ΩN ,

∫

ΩN

dzN 6= 0 andΩN ⊂ ZN

}
(13)

The operator T̆ (ν, ω) produces elements that have amplitudes that belong to L2

(
ΩN

)
when

Supp (ν) = ΩN [3].

The set of invertible diagonal operators in A form a group, G, that also has a reducible

representation on L∞
(
ZN

)
, as clearly L2

(
ΩN

)
are also invariant subspaces of G. However

it is not true that every function in L2

(
ZN

)
that is nonzero a.e. is a cyclic vector for G

and in fact there do not exist any cyclic vectors for G in L2

(
ZN

)
and thus one can never

generate all pure states by the action of G on a reference state.

We can contrast this semigroup to ones formed by proper bases of N -particle space by

comparing the preceding to the discrete case by focusing on a proper basis {|Φj〉} of HN ,
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the abelian algebra, Cd, generated by

{
∑

1≤j≤∞
λj |Φj〉 〈Φj|

}
and a reference state |Φref〉 =

∑
1≤j≤∞

αj |Φj〉 that has the property that αj 6= 0 ∀i (see Appendix C). Similarly to Cc the

abelian algebra Cd can also generate all pure states from such a reference state but it does

not have such desirable properties wrt H as Cc does e.g. the potential terms in H are no

longer diagonal nor will Cc commute with these terms.

III. EFFECTIVE HAMILTONIAN

Any pure state N -particle density operator D̆N (ν, ω), (in general unnormalized), can be

generated from a cyclic reference density D̆N
ref by the transformation

D̆N (ν, ω) = T̂
(
D̆N

ref

)
= T̆ (ν, ω) D̆N

ref T̆ (ν, ω)† (14)

The transformation T̂ (ν, ω) is positive as it maps the set of positive operators B1+

(HN
)

to

itself and the set of all such T̂ correspond to the semigroup Cc.

As the energy expectation value E (ν, ω) can be expressed as

E (ν, ω) =
Tr

{
HD̆N (ν, ω)

}

Tr
{
D̆N (ν, ω)

} =
Tr

{
HT̆ (ν, ω) D̆N

ref T̆ (ν, ω)†
}

Tr
{

T̆ (ν, ω) D̆N
ref T̆ (ν, ω)†

} =
Tr

{
T̆ (ν, ω)† HT̆ (ν, ω) D̆N

ref

}

Tr
{

T̆ (ν, ω) D̆N
ref T̆ (ν, ω)†

}

(15)

the action of the transformation T̂ (ν, ω) can be incorporated into an effective Hamiltonian

H (ν, ω) defined by

H (ν, ω) = T̆ (ν, ω)† HT̆ (ν, ω) (16)

and all expectation values can be taken wrt the IPS D̆N
ref .

The Hamiltonians, H, we consider are of the form

H = H0 −P •P + V1 + V2 (17)

where H0 is a constant, P the total generalized momentum operator for the system, V1 is

the sum of all one particle potential operators and V2 is the sum of all two particle poten-

tial operators. The generalized momentum is defined in terms of one particle generalized

momentum operators as

P =
∑

1≤j≤N

pj (18)
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where

pj = −i∇j −Aj (19)

Aj is the total external vector potential acting on particle j and

−i∇j = −i




∂
∂xj

∂
∂yj

∂
∂zj


 ; Aj =




Ajx

Ajy

Ajz


 (20)

The potentials {Aj}, V1 and V2 are all diagonal in the space-spin representation. The

operators
{

T̆ (ν, ω)
}

all commute with these potentials, which is of course by design, so

that

T̆ (ν, ω)† V T̆ (ν, ω) = ν̆Ne−iω̆N V ν̆Neiω̆N = (ν̆N)2 V

T̆ (ν, ω)†AjT̆ (ν, ω) = ν̆Ne−iω̆N Aj ν̆Neiω̆N = (ν̆N)2 Aj (21)

where V = V1 + V2

(ν̆N)2 V =

∫
ν

(
zN

)2
V

(
zN

) ∣∣zN
〉 〈

zN
∣∣ dzN

(ν̆N)2 Ajκ =

∫
ν

(
zN

)2
Ajκ

(
zN

) ∣∣zN
〉 〈

zN
∣∣ dzN ; κ = x, y, z (22)

i.e. the potentials are scaled by the integral kernels
{
ν

(
zN

)}
. It is important to note that

while the Hamiltonian H only contains potentials describing up to two particle interactions,

the integral kernels
{
ν

(
zN

)}
are in general multiparticle functions and thus produce multi-

particle potentials
{

ν
(
zN

)2
V

(
zN

)}
describing up to simultaneous N -particle interactions.

Furthermore the N -particle local scaling factors ν
(
zN

)
contain phase information pertaining

to 1, 2, · · · ,M < N particle interactions and the N -particle local phase ω
(
zN

)
contains local

scaling information pertaining to 1, 2, · · · ,M < N particle interactions as will discussed in

the examples.

The effect of the unitary part {eiωN} of the transformations
{

T̆ (ν, ω)
}

on the momentum

operators {−i∇j} (for simplicity we consider the case where there is no external vector

potential) is to produce a generalized gauge transformation i.e. producing the component

operators

e−iω̆N

(
−i

∂

∂xj

)
eiω̆N = −i

∂

∂xj

+
∂ω̆N

∂xj

(23)
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and 1-particle vector operators

e−iω̆N (−i∇j) eiω̆N = −i∇j +∇jω̆N (24)

(again note that ω̆N are N -particle operators). The effect of the scaling ν̆N on this is

(−i∇j +∇jω̆N) ν̆N = −iν̆N∇j − i (∇j ν̆N) + ν̆N (∇jω̆N) (25)

leading to an effective kinetic energy operator (see Appendix D) which is a sum of kinetic,

momentum and potential terms

K (ν, ω) = T̆ (ν, ω)† (P •P) T̆ (ν, ω) =

−∇ • (
ν̆2

)
I • ∇ −∇ • (

ν̆2
N∇ω̆N − iν̆N∇ν̆N

)

− (
ν̆2

N∇ω̆N − iν̆N∇ν̆N

) • ∇+ (ν̆N∇ω̆N − i∇ν̆N) • I • (ν̆N∇ω̆N − i∇ν̆N) (26)

where I is 3N × 3N unit matrix. Thus the effective Hamiltonian is given by

H (ν, ω) = H0 + K (ν, ω) + (ν̆N)2 V (27)

which displays that the effective scalar potential does not depend on the N -particle local

phase factor exp
{
iω

(
zN

)}
, but it should be noted that it does depend on phase relationships

between the individual particles.

IV. APPROXIMATIONS

One can expand the transformation T̆ (ν, ω) ∈ B (HN
)

in terms of antisymmetrized tensor

products of transformations [9][10] T̆nj
∈ B (Hnj) associated with partitions {n1, . . . , nm} of

N , i.e. for sets of {nj| 1 ≤ j ≤ m} where 0 ≤ nj ≤ N and
∑

1≤j≤m

nj = N , as

T̆ (ν, ω) =
∑

1≤m≤N

∑

{n1,...,nm}
cn1...nmT̆n1 (νn1 , ωn1) ∧ · · · ∧ T̆nm (νnm , ωnm) (28)

where νnp defines the operator ν̆np through an integral kernel νnp (znp) with variables

znp ≡ zqp+1 · · · zqp+np , where qp = n1 + · · · + np−1. The antisymmetrized product opera-

tor T̆n1 (νn1 , ωn1) ∧ · · · ∧ T̆nm (νnm , ωnm) is defined by

T̆n1 (νn1 , ωn1) ∧ · · · ∧ T̆nm (νnm , ωnm)
∣∣∣Φn1

Jn1
∧ · · · ∧ Φnm

Jnm

〉

=
∣∣∣T̆n1 (νn1 , ωn1) Φn1

Jn1
∧ · · · ∧ T̆nm (νnm , ωnm) Φnm

Jnm

〉

(29)
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for 1 ≤ Jnj
≤ (

r
nj

)
, 1 ≤ j ≤ m for a specific fixed partition {n1, . . . , nm} where{∣∣∣Φnj

Jnj

〉∣∣∣ 1 ≤ Jnj
≤ (

r
nj

)
; {n1, . . . , nm}

}
are proper bases for {Hnj | 1 ≤ j ≤ m}. If a factor

T̆np

(
νnp , ωnp

)
can be expressed as a product of lower order factors e.g.

T̆np

(
νnp , ωnp

)
= T̆p1 (νp1 , ωp1) ∧ · · · ∧ T̆pm (νpm , ωpm) (30)

where
∑

1≤j≤m

pj = np for a partition {p1, . . . , pm} we say it is decomposable if not, i.e. it can

only be expressed as a sum of such products, we say it is indecomposable.

In general it is possible to express the expansion eq. (28) of T̆ (ν, ω) in terms of anti-

symmetric tensor products T̆n1 (νn1 , ωn1)∧ · · · ∧ T̆nm (νnm , ωnm) of indecomposable operators{
T̆np

(
νnp , ωnp

)}
whose integral kernels are symmetric functions (see Appendix E) given by

the symmetric [9][10] tensor product of the kernels of these operators as

Tn1···nm

(
zN

)
= Tn1 (zn1) ∨ · · · ∨ Tnm (znm) (31)

Approximations to the set of transformations
{

T̆ (ν, ω)
}

can be generated by placing

restrictions on the expansion eq. (28) to various classes of partitions {n1, . . . , nm}, the types

of operators in the products and by limiting the choice of integral kernels ν
(
zN

)
, ω

(
zN

)

by expanding them in terms of fixed sets of function. For example some different types of

products are produced by:

1. The partition {1, . . . , 1} that leads to one particle operators acting in N -particle space

HN whose integral kernels are formed by a product of identical one particle integral

kernels

T
(
zN

)
= TN

1

(
zN

)
= T1 (z1) · · ·T1 (zN) (32)

and corresponds to a linear transformations of N -particle space HN through

T1 ∧ · · · ∧ T1 |ϕj1 · · ·ϕjN
〉 = |T1ϕj1 · · ·T1ϕjN

〉 ; 1 ≤ j1 < · · · < jN ≤ r (33)

where {|ϕj〉| 1 ≤ j ≤ r} forms a complete orthonormal basis for H1 of dimension r.

2. The partition {1, . . . , 1} that leads to N -particle operators acting in N -particle space

HN whose integral kernels are formed by a product of different one particle integral

kernels

T
(
zN

)
=

∑
σ∈SN

T1

(
zσ(1)

) · · ·TN

(
zσ(N)

)
(34)
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These transformations correspond to

T1 ∧ · · · ∧ TN |ϕ1 · · ·ϕN〉 = |T1ϕ1 · · ·TNϕN〉 ∀ |ϕj〉 ∈ HN , 1 ≤ j ≤ N (35)

which are not induced by linear transformations of one particle space H1 unless T1 =

· · · = TN . The integral kernel of this transformation can be developed using the polar

decomposition Tj (z) = νj (z) eiωj(z) to give

T
(
zN

)
=

∑
σ∈SN

νσ(1) (z1) eiωσ(1)(z1) · · · νσ(N) (zN) eiωσ(N)(zN )

=
∑

σ∈SN

νσ(1) (z1) · · · νσ(N) (zN) ei{ωσ(1)(z1)+···+ωσ(N)(zN )} (36)

One should be careful to note that in this expansion ν
(
zN

) 6=
∑

σ∈SN
νσ(1) (z1) · · · νσ(N) (zN) , and ω

(
zN

) 6= ∑
1≤j≤N

ωσ(j) (zj) but each are in fact

complicated functions of {νj, ωj|1 ≤ j ≤ N}. Thus although T
(
zN

)
= ν

(
zN

)
eiω(zN)

and the norm ‖|T1ϕ1 · · ·TNϕN〉‖ is independent of the N-particle phase ω
(
zN

)
it is

not independent of the individual particle phases {ωj (zj)}. Another important point

to note from this example is that IPSs are not all generated from a reference IPS by

one particle diagonal operators i.e. by transformations of the form T1 ∧ · · · ∧ T1 but

they are all generated by N -particle transformations of the form T1 ∧ T2 ∧ · · · ∧ TN ,

(see section V for a discussion of how these diagonal N -particle operators correspond

to non diagonal 1-particle operators)

3. The partition {2, . . . , 2} that leads to N -particle operators acting in N -particle space

HN whose integral kernels are formed by a product of identical two particle integral

kernels (of course there must be an even number of particles in this case)

T
(
zN

)
= T

N
2

2

(
zN

)
=

∑
σ∈SN

T2

(
zσ(1)zσ(2)

) · · ·T2

(
zσ(N−1)zσ(N)

)
(37)

through the definition

T2 ∧ · · · ∧ T2

∣∣∣g1 · · · gN
2

〉
=

∣∣∣T2g1 · · ·T2gN
2

〉
∀ |gj〉 ∈ H2, 1 ≤ j ≤ N

2
(38)

Using the expansion eq. (28) one can decompose T
(
zN

)
in terms of indecomposable parts

indexed by {n1, . . . , nm} e.g.

T
(
zN

)
=

∑
1≤m≤N

∑
{n1,...,nm}

Tn1...nm

(
zN

)
(39)
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and formulate approximations to the energy functional E (ν, ω) by truncating and approx-

imating terms in this expansion. For instance one might choose the parts indexed by

{1, · · · , 1} which contains integral kernels of the form

T
(
zN

)
= T1 (z1) ∨ · · · ∨ TN (zN) (40)

which includes p-particle operator integral kernels of the form

T1 (z1) ∨ · · · ∨ Tp (zp) ∨ δ (zp+1) ∨ · · · ∨ δ (zN) ; Tj 6= Tk, 1 ≤ j < k ≤ p; 1 ≤ p ≤ N (41)

and 1-particle operators integral kernels of the form

T1 (z1) ∨ · · · ∨ T1 (zN) . (42)

or just restrict attention to the operator kernels of eq. (42). A higher level of approximation

would include parts indexed by {1, · · · , 1} and all or a selection from integral kernels indexed

by {2, 1, · · · , 1} , {2, 2, 1, · · · , 1} , . . . , {2, 2, · · · , 2} and so on....

V. COMMUTATIVE VERSUS NONCOMMUTATIVE TRANSFORMATIONS

Example 2 of section IV showed that all IPSs can be generated by an abelian semigroup Cc

of diagonal N -particle operators, T1∧· · ·∧TN , composed of N diagonal one particle operators

{Tj| 1 ≤ j ≤ N}. At the same time it is well known that all IPSs can be generated by the

non abelian general linear group, GL (H1), of transformations that map H1 → H1. In this

section we explicitly describe a correspondence between Cc and GL (H1) by considering the

equivalence of N -dimensional subspaces, V (ϕ) , spanned by the vectors {|ϕj〉| 1 ≤ j ≤ N}
of H1 to N -particle IPSs |ϕ1 · · ·ϕN〉. The diagonal transformation

T1 ∧ · · · ∧ TN |ϕ1 · · ·ϕN〉 = |T1ϕ1 · · ·TNϕN〉 (43)

can be associated with the transformation T (ϕ) : V (ϕ) → VT (ϕ) between the subspaces

V (ϕ) spanned by the linearly independent vectors {|ϕj〉| 1 ≤ j ≤ N} and VT (ϕ) spanned

by the orthonormal vectors {|ψj〉| 1 ≤ j ≤ N} defined by

T (ϕ) (|ϕ1〉 , · · · , |ϕN〉) = (|ψ1〉 , · · · , |ψN〉) = (|T1ϕ1〉 , · · · , |TNϕN〉)∆ (ϕ)−
1
2 (44)

where ∆ (ϕ)jk = 〈Tjϕj|Tkϕk〉 and

∆ (ϕ) (|T1ϕ1〉 , · · · , |TNϕN〉) = (|T1ϕ1〉 , · · · , |TNϕN〉)∆ (ϕ) (45)
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i.e.

|ψj〉 =
∑

1≤k≤N

|Tkϕk〉
(
∆ (ϕ)−

1
2

)
kj

; 1 ≤ j ≤ N (46)

Using eq. (45) we obtain

|ψ1 · · ·ψN〉 = det (∆ (ϕ))−
1
2 |T1ϕ1 · · ·TNϕN〉 (47)

and

|T1ϕ1 · · ·TNϕN〉 = det (∆ (ϕ))
1
2 |ψ1 · · ·ψN〉 (48)

Hence the action of the N -particle diagonal transformation T1∧· · ·∧TN on the IPS |ϕ1 · · ·ϕN〉
produces the IPS |T1ϕ1 · · ·TNϕN〉 that can also be generated by the action of the one particle

transformation R (ϕ) on |ϕ1 · · ·ϕN〉 where R (ϕ) = ∆ (ϕ)
1
2 T (ϕ) i.e.

T1 ∧ · · · ∧ TN |ϕ1 · · ·ϕN〉 = R (ϕ) ∧ · · · ∧ R (ϕ) |ϕ1 · · ·ϕN〉
= |R (ϕ) ϕ1 · · ·R (ϕ) ϕN〉 =

∣∣∣∆ (ϕ)
1
2 T (ϕ) ϕ1 · · ·∆ (ϕ)

1
2 T (ϕ) ϕN

〉

= det (∆ (ϕ))
1
2 |T (ϕ) ϕ1 · · · T (ϕ) ϕN〉 = |T1ϕ1 · · ·TNϕN〉 (49)

The transformations {Tj} and {T1 ∧ · · · ∧ TN} form commuting sets, are diagonal in the

space-spin coordinate representation and are semigroups, while the transformations {R (ϕ)}
and {R (ϕ) ∧ · · · ∧ R (ϕ)} are not in general diagonal in this representation nor do they form

commuting sets, but they do form a group.

The correspondence between the N -particle transformation T1 ∧ · · · ∧ TN and the one

particle transformationR (ϕ) depends on the existence of the one dimensional representation

det (∆) of ∆ in HN . This does not carry over to the analogous construction applied to

transformations defined inH2 e.g. as in example 3 of section IV, thus one cannot obtain such

a correspondence between a transformation on H2 and a product of diagonal transformation

acting in HN .

It is interesting to note the form of the first order reduced density operators, L1
N

(
DN

)

associated with the normalized states

DN =
|T1ϕ1 · · ·TNϕN〉 〈T1ϕ1 · · ·TNϕN |
〈T1ϕ1 · · ·TNϕN |T1ϕ1 · · ·TNϕN〉 (50)

are

L1
N

(
DN

)
=

∑
1≤j,k≤N

|Tjϕj〉
(
∆−1

)
jk
〈Tkϕk| =

∑
1≤j≤N

|ψj〉 〈ψj| (51)
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which leads to vastly simplified expressions for expectation values wrt the state

|T1ϕ1 · · ·TNϕN〉 than the general ones developed in section VI. Eq. (51) covers the case

Tj = Ij 1 ≤ j ≤ N leading to

L1
N

( |ϕ1 · · ·ϕN〉 〈ϕ1 · · ·ϕN |
〈ϕ1 · · ·ϕN |ϕ1 · · ·ϕN〉

)
=

∑
1≤j,k≤N

|ϕj〉
(
∆−1

)
jk
〈ϕk| =

∑
1≤j≤N

|ψj〉 〈ψj| (52)

where ∆jk = 〈ϕj|ϕk〉 .

VI. EXAMPLES

We first consider the approximation indexed by {1, · · · , 1} and develop it in manner

that can be used for higher order approximations so that we can see the general structure

common to all levels of approximation. It is clear however that the resulting expressions are

more complicated than the ones that would be obtained if we utilized the correspondence

described in section V.

A. Approximations indexed by {1, · · · , 1}

The transformations that we consider in this case are

T̆1 ∧ · · · ∧ T̆N |ϕ1 · · ·ϕN〉 =
∣∣∣T̆1ϕ1 · · · T̆NϕN

〉
(53)

That have integral kernels

T
(
zN

)
= T1 (z1) ∨ · · · ∨ TN (zN) =

∑
σ∈SN

T1

(
zσ(1)

) · · ·TN

(
zσ(N)

)

=
∑

σ∈SN

Tσ(1) (z1) · · ·Tσ(N) (zN)

=
∑

σ∈SN

νσ(1) (z1) · · · νσ(N) (zN) ei{ωσ(1)(z1)+···+ωσ(N)(zN )} (54)

where

ωσ(j) (zj) = δ (z1) · · · δ (zj−1) ωσ(j) (zj) δ (zj+1) · · · δ (zN) (55)

and the kernels {νj (zj) |1 ≤ j ≤ N} could be equal to each other or be delta functions as

could the kernels {ωj (zj) |1 ≤ j ≤ N}. The N -particle kernels ν, ω are both functions of the

1-particle kernels {ν1, . . . , νN , ω1, . . . , ωN} i.e.

ν = ν (ν1, . . . , νN , ω1, . . . , ωN)

ω = ω (ν1, . . . , νN , ω1, . . . , ωN) (56)
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The first term we need to evaluate is the normalization

Tr
{
D̆N (ν, ω)

}
=

〈
T̆ (ν, ω) ϕ1 · · ·ϕN

∣∣∣ T̆ (ν, ω) ϕ1 · · ·ϕN

〉

=
∑

σ,σ′∈SN

〈
T̆σ(1) · · · T̆σ(N)ϕ1 · · ·ϕN

∣∣∣T̆σ′(1) · · · T̆σ′(N)ϕ1 · · ·ϕN

〉

=
∑

σ,σ′∈SN

〈
T̆σ(1)ϕ1 · · · T̆σ(N)ϕN

∣∣∣T̆σ′(1)ϕ1 · · · T̆σ′(N)ϕN

〉

= 〈ϕ1 · · ·ϕN | S̆eff (ν, ω) ϕ1 · · ·ϕN

〉
≡ S (ν, ω) (57)

where |ϕ1 · · ·ϕN〉 is a fixed IPS. The effect of the multiparticle potential Tσ(1) · · ·Tσ(N) on

an IPS is to produce a new IPS so that we obtain the inner product between two different

IPSs leading to the normalization

S (ν, ω) =
∑

σ,σ′∈SN

det {Sσσ′} (58)

where

(Sσσ′)jk =
〈
νσ(j)e

iωσ(j)ϕj

∣∣ νσ′(k)e
iωσ′(k)ϕk

〉
=

∫
ϕj (z)∗ ϕk (z) ei(ωσ′(k)(z)−ωσ(j)(z))νσ(j) (z) νσ′(k) (z) dz (59)

The second term produced by the effective Hamiltonian is the expectation value K (ν, ω)

wrt the IPS |ϕ1 · · ·ϕN〉

K (ν, ω) = S (ν, ω)−1 〈ϕ1 · · ·ϕN | K (ν, ω) ϕ1 · · ·ϕN〉 (60)

of the effective kinetic energy operator K (ν, ω) given by

K (ν, ω) = S (ν, ω)−1
∑

σ,σ′∈SN

{〈
νσ(1)e

iωσ(1)ϕ1 · · · eiωσ(N)νσ(N)ϕN

(
−

∑
1≤j≤N

∇2
j

)
eiωσ′(1)νσ′(1)ϕ1 · · · eiωσ′(N)νσ′(N)ϕN

〉
}

(61)

which can be evaluated by utilizing the expressions described in Appendix F that have been

developed by [11] to give

K (ν, ω) =
∑

σ,σ′∈SN

Tr {Kσσ′ adj (Sσσ′)} (62)

where

(Kσσ′)jk = −
∫ {

∇ϕj (z)∗ • ∇ϕk (z) νσ(j) (z) νσ′(k) (z) ei{ωσ′(k)(z)−ωσ(j)(z)}} dz (63)
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The expectation value of the one particle potential term

V1 (ν, ω) = S (ν, ω)−1 νσ(1)

〈
eiωσ(1)ϕ1 · · · eiωσ(N)νσ(N)ϕN

∣∣×
V1e

iωσ′(1)νσ′(1)ϕ1 · · · eiωσ′(N)νσ′(N)ϕN

〉
(64)

can be evaluated to give

V1 (ν, ω) = S (ν, ω)−1 ∑
σ,σ′∈SN

Tr {V1σσ′ adj (Sσσ′)} (65)

where V1

(
zN

)
=

∑
1≤j≤N

V1 (zj) and

(V1σσ′)jk =

∫ {
V1 (z1) ϕj (z1)

∗ ϕk (z1) νσ(j) (z1) νσ′(k) (z1) ei{ωσ′(k)(z)−ωσ(j)(z)}} dz1 (66)

The expectation value V2 (ν) of the coulomb potential term is given by

V2 (ν, ω) = S (ν, ω)−1 〈
νσ(1)e

iωσ(1)ϕ1 · · · eiωσ(N)νσ(N)ϕN |V2 eiωσ′(1)νσ′(1)ϕ1 · · · eiωσ′(N)νσ′(N)ϕN

〉

(67)

which can be evaluated using the expressions in Appendix F as

S (ν, ω)−1 ∑
σ,σ′∈SN

Tr
{
Gσ,σ′ adj(2) (Sσσ′)

}
(68)

where

(Gσ,σ′)jklm =

∫ {
νσ(j) (z1) ϕj (z1)

∗ νσ(k) (z1) ϕk (z1)
∗ νl (z2) ϕσ′(l) (z2) νm (z2) ϕσ′(m) (z2)

× ei{ωσ′(l)(z2)+ωσ′(m)(z2)−ωσ(j)(z1)−ωσ(k)(z1)}
‖r1 − r2‖

− νσ(j) (z2) ϕj (z2)
∗ νσ(k) (z2) ϕk (z2)

∗ νl (z1) ϕσ′(l) (z1) νm (z1) ϕσ′(m) (z1)

× ei{ωσ′(l)(z1)+ωσ′(m)(z1)−ωσ(j)(z2)−ωσ(k)(z2)}
‖r1 − r2‖

}
dz1dz2 (69)

The value of the energy functional E (ν, ω) is then the sum

E (ν, ω) = H0 +K (ν, ω) + V1 (ν, ω) + V2 (ν, ω) (70)

where the kernels {ν, ω} are expressed in terms of {ν1, . . . , νN , ω1, . . . , ωN} which in turn

can be expanded in terms of a fixed subset of s functions {f1, . . . , fs} and the coefficients of

these expansions then become the variational parameters of the problem.
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B. Approximations indexed by {2, · · · , 2}

The transformations that we consider in this case are

T̆1 ∧ · · · ∧ T̆N
2
|ϕ1 · · ·ϕN〉 =

∑
σ∈SN

∣∣∣T̆1

(
ϕσ(1)ϕσ(2)

) · · · T̆N
2

(
ϕσ(N−1)ϕσ(N)

)〉
(71)

where the amplitudes of
∣∣Tj

(
ϕσ(2j−1)ϕσ(2j)

)〉
are given by

〈z2j−1, z2j

∣∣Tj

(
ϕσ(2j−1)ϕσ(2j)

)〉
=

∫
Tj (z2j−1, z2j) ϕσ(2j−1) (z2j−1) ϕσ(2j) (z2j) dz2j−1dz2j (72)

and the integral kernels of T̆1 ∧ · · · ∧ T̆N
2

are

T
(
zN

)
= T1 (z1, z2) ∨ · · · ∨ TN

2
(zN−1,zN) =

∑
σ∈SN

T1

(
zσ(1), zσ(2)

) · · ·TN
2

(
zσ(N−1),zσ(N)

)

=
∑

σ∈SN

ν1

(
zσ(1), zσ(2)

) · · · νN
2

(
zσ(N−1), zσ(2N)

)
e

i

�
ω1(zσ(1),zσ(2))+···+ω N

2
(zσ(N−1),zσ(N))

�

(73)

where

ωj

(
zσ(2j−1), zσ(2j)

)
= δ (z1) · · ·ωj

(
zσ(2j−1), zσ(2j)

) · · · δ (zN) (74)

In this case we must treat the effective overlap operator S (ν, ω) as a full N -particle

operator

S (ν, ω) =

∫ {
∑

σ,σ′∈SN

T1

(
zσ(1), zσ(2)

)∗ · · ·TN
2

(
zσ(N−1),zσ(N)

)∗

T1

(
zσ′(1), zσ′(2)

) · · ·TN
2

(
zσ′(N−1),zσ′(N)

) ∣∣zN
〉 〈

zN
∣∣
}

dzN (75)

and take the expectation value of this operator wrt the IPS |ϕ1 · · ·ϕN〉 producing

S (ν, ω) = 〈ϕ1 · · ·ϕN |S (ν, ω) ϕ1 · · ·ϕN〉 =

∑
σ,σ′,σ′′∈SN

∫ {
ϕ1 (z1)

∗ · · ·ϕN (zN)∗ (−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)

×
∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

× e
i

�
ω1(zσ′(1),zσ′(2))−ω1(zσ(1),zσ(2))+···+ω N

2
(zσ′(N−1),zσ′(N))−ω N

2
(zσ(N−1),zσ(N))

�}
dzN (76)

The effective kinetic energy is the expectation value K (ν, ω)

K (ν, ω) = S (ν, ω)−1 〈ϕ1 · · ·ϕN | K (ν, ω) ϕ1 · · ·ϕN〉 (77)
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of the effective kinetic energy operator K (ν, ω) given by

K (ν, ω) = −∇ • (
ν2

)
I • ∇︸ ︷︷ ︸

I

−∇ • (
ν2∇ω − iν∇ν

)
︸ ︷︷ ︸

II

− (
ν2∇ω − iν∇ν

) • ∇︸ ︷︷ ︸
III

+ (ν∇ω − i∇ν) • I • (ν∇ω − i∇ν)︸ ︷︷ ︸
IV

(78)

where the N−particle integral kernels ν, ω are functions of the two particle integral kernels{
ν1, . . . , νN

2
, ω1, . . . , ωN

2

}
i.e.

ν = ν
(
ν1, . . . , νN

2
, ω1, . . . , ωN

2

)

ω = ω
(
ν1, . . . , νN

2
, ω1, . . . , ωN

2

)
(79)

The expansions of the various parts of the effective kinetic energy operator eq. (78) are

shown in Appendix G. The expectation value of the one particle potential

V1 (ν, ω) = S (ν, ω)−1 〈ϕ1 · · ·ϕN |V1 ϕ1 · · ·ϕN〉 (80)

is given in terms of the effective operators

V1 =
∑

σ,σ′∈SN

∑
1≤j≤N

∫ {
V1 (zj) T1

(
zσ(1), zσ(2)

)∗ · · ·TN
2

(
zσ(N−1),zσ(N)

)∗

T1

(
zσ′(1), zσ′(2)

) · · ·TN
2

(
zσ′(N−1),zσ′(N)

) ∣∣zN
〉 〈

zN
∣∣
}

dzN (81)

and can be evaluated to give

V1 (ν, ω) = S (ν, ω)−1×
∑

σ,σ′,σ′′∈SN

∑
1≤j≤N

∫ {
ϕ1 (z1)

∗ · · ·ϕN (zN)∗ (−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)

× V1 (zj)
∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

e
i

�
ω1(zσ′(1),zσ′(2))−ω1(zσ(1),zσ(2))+···+ω N

2
(zσ′(N−1),zσ′(N))−ω N

2
(zσ(N−1),zσ(N))

�}
dzN (82)

The expectation value V2 (ν) of the coulomb potential term is given by

V2 (ν, ω) = S (ν, ω)−1 〈ϕ1 · · ·ϕN |V2 ϕ1 · · ·ϕN〉 (83)
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which can be evaluated in terms of the effective coulomb operator

∑

σ,σ′∈SN

∑

1≤j<k≤N

∫ {
V2 (zj,zk) T1

(
zσ(1), zσ(2)

)∗ · · ·TN
2

(
zσ(N−1),zσ(N)

)∗

T1

(
zσ′(1), zσ′(2)

) · · ·TN
2

(
zσ′(N−1),zσ′(N)

) ∣∣zN
〉 〈

zN
∣∣
}

dzN (84)

to give

V2 (ν, ω) = S (ν, ω)−1×
∑

σ,σ′,σ′′∈SN

∑

1≤j<k≤N

∫ {
ϕ1 (z1)

∗ · · ·ϕN (zN)∗ (−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)

× V2 (zj, zk)
∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

e
i

�
ω1(zσ′(1),zσ′(2))−ω1(zσ(1),zσ(2))+···+ω N

2
(zσ′(N−1),zσ′(N))−ω N

2
(zσ(N−1),zσ(N))

�}
dzN

(85)

where

V2 (zj, zk) =
1

‖rj − rk‖δ (ξj − ξk) (86)

for zj ≡ (rj, ξj) and zk ≡ (rk, ξk) .

The value of the energy functional E (ν, ω) is then the sum

E
(
ª

(
ν1, . . . , νN

2
, ω1, . . . , ωN

2

))
= H0 +K (ν, ω) + V1 (ν, ω) + V2 (ν, ω) (87)

and the optimal IPS is given by minimizing E (ª (ν, ω)) over ν =
(
ν1, · · · , ν N

2

)
and

ω =
(
ω1, · · · , ω N

2

)
. In an analogous fashion to the {1, . . . , 1} case the functions

{
ν1, · · · , ν N

2
, ω1, · · · , ω N

2

}
can be expanded in terms of a fixed set of s functions {f1, . . . , fs} ,

where now these functions are two particle functions.

VII. SUMMARY

In this article we have shown that

• one can generate all pure states from a cyclic reference state (a pure state that has a

wavefunction that is non zero almost everywhere) by transformations that are diagonal

in the space-spin coordinate representation,
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• these transformations, which form an abelian semigroup Cc, also maintain the local form

of the defining space-spin coordinate representation of the Hamiltonian, leading to

effective Hamiltonians that have direct physical interpretability in terms of momentum

and potential operators and thus have a certain classical flavor,

• one can form an approximation theory by restricting attention to sub semigroups of Cc,

that lead to approximations which have a direct physical interpretation.

These properties should be contrasted to the effect of the transformation of state in

truncated configurational interaction, Multi Configurational Self Consistent Field and couple

cluster methods that do not lead to or matrix elements that could identified with such

effective Hamiltonians.

To illuminate these points we presented some examples that showed the form of terms

that need to be calculated in order to produce an energy functional that can be optimized.

Many strategies are obviously possible for the simplification of the expressions we obtained

which were, by intention, in a very raw form that need to be simplified in order to produce

practical computational formulae.

The approximations that are suggested in this article present a new approach to obtaining

approximate solutions to the Schrödinger equation, and offer possibilities for development

in many directions.
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APPENDIX A: SUBSPACES OF OPERATORS

The set of trace class operators is defined as

B1 (H) =
{

X|X ∈ B (H) ; Tr
{(

X†X
) 1

2

}
< ∞

}
(A1)

where B (H) is the space of bounded operators acting in the Hilbert space H. B1 (H) is a

Banach space equipped with the norm

‖X‖1 = Tr
{(

X†X
) 1

2

}
(A2)
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The space B (H) is also a Banach space with a norm defined as

‖X‖ = sup
|Ψ〉∈H

{〈Ψ|XΨ〉
〈Ψ|Ψ〉

}
(A3)

The closure of B1 (H) wrt ‖‖ produces B (H). The relationship between these spaces is

B (H) ⊇ B1 (H) (A4)

and their norms is

‖X‖ ≤ ‖X‖1 (A5)

APPENDIX B: STATES

The states of an N -particle quantum mechanical system correspond to positive, normal-

ized trace class operators and form a convex subset, SN , of the Banach space, B1

(HN
)
, of

N -particle trace class operators, defined as

SN =
{
DN |DN ∈ B1

(HN
)
, DN ≥ 0, T rDN = 1

}
(B1)

Pure states are idempotent operators i.e.

(
DN

)2
= DN (B2)

and normalized pure states can be associated with, in a 1-1 fashion, with a ray {α |Ψ〉 |α ∈ C}
generated by a vector |Ψ〉 in the N-particle Hilbert space HN by the relationship

DN =
|Ψ〉 〈Ψ|
〈Ψ|Ψ〉 (B3)

The set of unnormalized states form the set of positive trace class operators, B1+ (H1). States

that are not idempotent are called mixed or ensemble states and correspond to statistical

mixtures of pure states.

APPENDIX C: DISCRETE VERSUS CONTINUOUS

The discrete semigroup Cd is given by operators of the form

Q =
∑

1≤j≤∞
qj |ej〉 〈ej| (C1)
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and the continuous Cc by

T =

∫
T (x) |x〉 〈x| dx (C2)

In the discrete case an invariant one dimensional subspace exists if there is a vector |v〉 such

that

Q |v〉 = αQ |v〉 ∀Q ∈ Cd (C3)

This condition can be expressed as

∑
1≤j≤∞

Qj |ej〉 〈ej| v〉 = αQ

∑
1≤j≤∞

|ej〉 〈ej| v〉 ∀Q ∈ Cd (C4)

as the basis {ej} is linearly independent we can treat each component separately to obtain

Qj |ej〉 〈ej| v〉 = αQ |ej〉 〈ej| v〉 ∀Qj ∀j (C5)

this implies that

Qj = αQ ∀vj 6= 0 ∀Qj (C6)

let

v1 6= 0 & v2 6= 0 (C7)

and all other expansion coefficients of |v〉 equal to zero then eq. (C6)

Q1 = Q2 = αQ ∀Q1, Q2 (C8)

which clearly is not possible. Hence only one coefficient can be nonzero and we obtain

|v〉 = β |ek〉 (C9)

giving ∑
1≤j≤∞

Qj |ej〉 〈ej| β ek〉 = Qkβ |ek〉 ∀Q ∈ Cd (C10)

which shows that αQ = Qk. At the opposite extreme if all the expansion coefficients {vj}
are non zero then |v〉 would be a cyclic vector for Cd i.e. the Hilbert space is generated by

the action of Cd on |v〉.
In the continuous case an invariant one dimensional subspace exists if

T |v〉 = αT |v〉 ∀T ∈ Cc (C11)
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which can be expressed as
∫

T (x) |x〉 〈x| v〉 dx = αT

∫
|x〉 〈x| v〉 dx ∀T ∈ Cc (C12)

⇒ t (x) = αT v (x) 6= 0 ∀t, x ∈ ∆ (C13)

so that for sets of non zero measure ∆

T (x) 〈x| v〉 = αT 〈x| v〉 ∀T, x ∈ ∆ (C14)

and

T (x) = αT when v (x) 6= 0 , x ∈ ∆ ∀T (C15)

However now there no single components {|x〉} as these vectors do not belong to the Hilbert

space and there is no such square integrable function v (x) that makes this true for all T (the

analogous condition to eq. (C8) in the continuous case cannot be satisfied), so no invariant

one dimensional Hilbert subspaces for the semigroup {T} exist. If the square integrable

function v (x) is non zero almost everywhere then it is a cyclic vector for the semigroup Cc.

APPENDIX D: TRANSFORMATION OF THE KINETIC ENERGY OPERATOR

1. Transition Amplitudes

We consider the commutation relationships between the operators P,eiω̆N and ν̆N and

observe that

1.

Peiω̆N |Ψ〉 = (−i∇) eiω̆N |Ψ〉 = eiω̆N (−i∇) |Ψ〉+ eiω̆N (∇ω̆N) |Ψ〉
= eiω̆N (−i∇+∇ω̆N) |Ψ〉 = eiω̆N {P +∇ω̆N} |Ψ〉 (D1)

2.

Pν̆N |Ψ〉 = (−i∇) ν̆N |Ψ〉
= ν̆N (−i∇) |Ψ〉+ (−i∇ν̆N) |Ψ〉 = {ν̆NP− i∇ν̆N} |Ψ〉 (D2)

3.

ν̆Neiω̆N |Ψ〉 = eiω̆N ν̆N |Ψ〉 (D3)
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Which can be summarized in the commutation relationship

[
P,eiω̆N

]
= eiω̆N∇ω̆N

[P,ν̆N ] = i∇ν̆N

[
ν̆N , eiω̆N

]
= 0 (D4)

that produce

Pν̆Neiω̆N |Ψ〉 = {ν̆NP− i∇ν̆N} eiω̆N |Ψ〉 =
{
ν̆Neiω̆N {P +∇ω̆N} − ieiω̆N∇ν̆N

} |Ψ〉
= eiω̆N {ν̆NP+ν̆N∇ω̆N − i∇ν̆N} |Ψ〉 (D5)

This allows us to express the transition amplitude

〈T (ν̆Na, ω̆Na) Ψ| (P •P) T (ν̆Nb, ω̆Nb) Ψ〉 (D6)

as
〈
eiω̆Na {ν̆NaP+ν̆Na∇ω̆Na − i∇ν̆Na}Ψ|eiω̆Nb {ν̆NbP+ν̆Nb∇ω̆Nb − i∇ν̆Nb}Ψ

〉
(D7)

which gives

A
〈
ν̆Nae

iω̆NaPΨ|ν̆Nbe
iω̆NbPΨ

〉
= − 〈

Ψ|{∇ • (
ν̆Naν̆Nbe

i(ω̆Nb−ω̆Na)
)
I • ∇}

Ψ
〉

(D8)

where

∇ • (
ν̆Naν̆Nbe

i(ω̆Nb−ω̆Na)
)
I • ∇

=
(
∇1 · · · ∇m

)



ν̆Naν̆Nbe
i(ω̆Nb−ω̆Na) · · · 0
...

. . .
...

0 · · · ν̆Naν̆Nbe
i(ω̆Nb−ω̆Na)







∇1

...

∇m


 (D9)

The transition amplitude eq. (D8) is given explicitly by

−
∫ {

ν̆Na (z) e−iω̆Na(z)∇Ψ (z)∗ ν̆Nb (z) eiω̆Nb(z)∇Ψ (z)
}

dz

= −
∫ {

∇Ψ (z)† • ∇Ψ (z) ei(ω̆Nb(z)−ω̆Na(z))ν̆Na (z) ν̆Nb (z)
}

dz (D10)

B

〈
ν̆Nae

iω̆NaPΨ| {ν̆Nb∇ω̆Nb − i∇ν̆Nb} e−iω̆NbΨ
〉

= −i
〈
Ψ|{∇ • ν̆Nae

i(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)
}

Ψ
〉

(D11)
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C

〈
(ν̆Na∇ω̆Na − i∇ν̆Na) Ψ|vbe

iω̆NbPΨ
〉

= −i
〈
Ψ|{(ν̆Na∇ω̆Na − i∇ν̆Na) • vbe

i(ω̆Nb−ω̆Na)I • ∇}
Ψ

〉
(D12)

D

〈(ν̆Na∇ω̆Na − i∇ν̆Na) Ψ| (ν̆Nb∇ω̆Nb − i∇ν̆Nb) Ψ〉
=

〈
Ψ|{(ν̆Na∇ω̆Na − i∇ν̆Na) • ei(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)

}
Ψ

〉
(D13)

collecting together the terms A,B,C and D we obtain

〈T (ν̆Na, ω̆Na) Ψ| (P •P) T (ν̆Nb, ω̆Nb) Ψ〉 =

〈Ψ |{−∇ • (
ν̆Naν̆Nbe

i(ω̆Nb−ω̆Na)
)
I • ∇

−∇ • ν̆Nae
i(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)

− (ν̆Na∇ω̆Na − i∇ν̆Na) • vbe
i(ω̆Nb−ω̆Na)I • ∇

+ (ν̆Na∇ω̆Na − i∇ν̆Na) • ei(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)
}

Ψ〉 (D14)

We can also consider this as the expectation value wrt the pure state |Ψ〉 of the effective

operator K (ν̆Na, ω̆Na, ν̆Nb, ω̆Nb) where

K (ν̆Na, ω̆Na, ν̆Nb, ω̆Nb) =

−∇ • (
ν̆Naν̆Nbe

i(ω̆Nb−ω̆Na)
)
I • ∇ −∇ • ν̆Nae

i(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)

− (ν̆Na∇ω̆Na − i∇ν̆Na) • vbe
i(ω̆Nb−ω̆Na)I • ∇

+ (ν̆Na∇ω̆Na − i∇ν̆Na) • ei(ω̆Nb−ω̆Na)I • (ν̆Nb∇ω̆Nb − i∇ν̆Nb)

(D15)

2. Expectation Values

If we set ν̆Na = ν̆Nb = ν̆N and ω̆Na = ω̆Nb = ω̆N we obtain the expectation value of the

Kinetic Energy operator

〈T (ν̆N , ω̆N) Ψ| (P •P) T (ν̆N , ω̆N) Ψ〉 (D16)
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which can be developed to produce

〈T (ν̆N , ω̆N) Ψ| (P •P) T (ν̆N , ω̆N) Ψ〉 =

〈Ψ |{−∇ • (
ν̆2

N

)
I • ∇

−∇ • (
ν̆2

N∇ω̆N − iν̆N∇ν̆N

)

− (
ν̆2

N∇ω̆N − iν̆N∇ν̆N

) • ∇
+ (ν̆N∇ω̆N − i∇ν̆N) • I • (ν̆N∇ω̆N − i∇ν̆N)} Ψ〉 (D17)

leading to the definition of an effective Kinetic Energy operator

K (ν̆N , ω̆N) = −∇ • (
ν̆2

N

)
I • ∇ −∇ • (

ν̆2
N∇ω̆N − iν̆N∇ν̆N

)

− (
ν̆2

N∇ω̆N − iν̆N∇ν̆N

) • ∇+ (ν̆N∇ω̆N − i∇ν̆N) • I • (ν̆N∇ω̆N − i∇ν̆N) (D18)

APPENDIX E: SYMMETRIC KERNELS

The integral kernels of the operators T̆ (ν, ω) and in general
{

T̆np

(
νnp , ωnp

)}
are sym-

metric functions. Which is shown by considering the wavefunction
〈
znp

∣∣∣Ψ̃np

〉
= Ψ̃np (znp) = νnp (znp) eiω(znp )Ψnp (znp) (E1)

resulting from the transformation
∣∣∣Ψ̃np

〉
= T̆np

(
νnp , ωnp

) ∣∣Ψnp

〉
=

∫
Tnp (znp) |znp〉 〈znp |Ψ〉 dznp . (E2)

Ψ̃np (znp) is antisymmetric wrt coordinate permutation σ i.e.

Ψ̃np

(
zσ(1), · · · , zσ(np)

)
= (−1)π(σ) Ψ̃np (znp) = (−1)π(σ) Ψ̃np

(
z1, · · · , znp

)
for σ ∈ Snp (E3)

where Snp is the (np)
th order symmetric group and π (σ) is the parity of σ. Hence

Ψ̃np

(
zσ(1), · · · , zσ(np)

)
= (−1)π(σ) Ψ̃np

(
z1, · · · , znp

)

= Tnp

(
zσ(1), · · · , zσ(np)

)
(−1)π(σ) Ψnp

(
z1, · · · , znp

)

⇒ Tnp

(
zσ(1), · · · , zσ(np)

)
= Tnp

(
z1, · · · , znp

) ∀σ ∈ Snp (E4)

Hence a sufficient requirement on the magnitude νnp

(
zqp+1, · · · , zqp+np

)
and phase

ωnp

(
zqp+1, · · · , zqp+np

)
to produce a symmetric Tnp

(
zqp+1, · · · , zqp+np

)
is that they are also

symmetric and all symmetric Tnp

(
zqp+1, · · · , zqp+np

)
can be generated from symmetric

νnp

(
zqp+1, · · · , zqp+np

)
and ωnp

(
zqp+1, · · · , zqp+np

)
, but we note that this is not a necessary

requirement.
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APPENDIX F: TRANSITION AMPLITUDES AND EXPECTATION VALUES

WRT IPS

We will need to calculate expectation values and transition amplitudes between IPS com-

posed of non orthogonal 1-particle states, to do this we will follow the presentation [11]. Con-

sider two IPSs |Ψ〉 and |Φ〉 composed of nonorthogonal general spin orbitals {ψj|1 ≤ j ≤ N}
and {ϕj|1 ≤ j ≤ N} and the transition amplitude

〈Ψ|HΦ〉 (F1)

where the Hamiltonian is a sum of one and two particle operators

H =
∑

1≤j≤N

h (j) +
1

2

∑

1≤j 6=k≤N

g (j, k) (F2)

The transition amplitude of the 1-particle part is given by
〈

Ψ

∣∣∣∣∣
∑

1≤j≤N

h (j) Φ

〉
= Tr {h adj (S)} (F3)

where the matrix h has matrix elements {hjk|1 ≤ j, k ≤ N} given by

hjk = 〈ψj|h (1) ϕk〉 =

∫
ψj (z)∗ h (z, z′) ϕk (z′) dzdz′ (F4)

and the classical N × N adjugate matrix adj (S) of the overlap matrix

S ≡{〈ψj|ϕk〉 |1 ≤ j, k ≤ N} is defined by

(adj (S))jk = (−1)j+k det (S [k|j]) (F5)

where S [k|j] is the (N − 1)× (N − 1) matrix obtained from S by deleting the row k and

the column j.

The transition amplitude of the 2-particle part is given by
〈

Ψ

∣∣∣∣∣
1

2

∑

1≤j 6=k≤N

g (j, k) Φ

〉
=

1

2
Tr

{
G adj(2) (S)

}
(F6)

where the matrix G has matrix elements {gjklm|1 ≤ j < k ≤ N ; 1 ≤ l < m ≤ N} given by

gjklm = 〈ψjψk|g (1, 2) ϕlϕm〉

=

∫ {
ψj (z1)

∗ ψk (z2)
∗ g

(
z1, z2, z

′
1, z

′
2

)
ϕl (z

′
1) ϕm (z′2)

−ψj (z1)
∗ ψk (z2)

∗ g
(
z1, z2, z

′
1, z

′
2

)
ϕm (z′1) ϕl (z

′
2)

}
dz2dz′2 (F7)
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and the second order
(

N
2

)× (
N
2

)
adjugate matrix adj(2) (S) is defined by

(
adj(2) (S)

)
jklm

= (−1)j+k det (S [lm|jk]) (F8)

where S [lm|jk] is the (N − 2)× (N − 2) matrix obtained from S by deleting the rows l, m

and the columns j, k.

In general the transition amplitude of the p-particle part is given by

〈
Ψ

∣∣∣∣∣∣
1

p!

∑

1≤j1 6=···6=jp≤N

Op (j1, · · · , jp) Φ

〉
=

1

p!
Tr

{
Op adj(p) (S)

}
(F9)

where the matrix Op has matrix elements

{
[Op]j1,··· ,jp;k1,··· ,kp

|1 ≤ j1 < · · · < jp ≤ N ; 1 ≤ k1 < · · · < kp ≤ N
}

(F10)

given by

[Op]j1,··· ,jp;k1,··· ,kp
=

〈
ψj1 · · ·ψjp|g (j, k) ϕk1 · · ·ϕkp

〉

=

∫ 

ψj1 (z1)

∗ · · ·ψjp (zp)
∗ Op

(
z1···zp, z

′
1···z

′
p

) ∑
σ∈Sp

(−1)π(σ) ϕkσ(1)
(z′1) · · ·ϕkσ(p)

(
z′p

)


 dzpdz′p

(F11)

and the pth order
(

N
p

)× (
N
p

)
adjugate matrix adj(p) (S) is defined by

(
adj(p) (S)

)
j1,··· ,jp;k1,··· ,kp

= (−1)

∑
1≤l≤p

{jl+kl}
det (S [j1, · · · , jp|k1, · · · , kp]) (F12)

where S [j1, · · · , jp|k1, · · · , kp] is the (N − p)× (N − p) matrix obtained from S by deleting

the rows j1, · · · , jp and the columns k1, · · · , kp.

APPENDIX G: KINETIC ENERGY EXPANSION IN THE {2, . . . , 2} APPROX-

IMATION

The effective kinetic energy operator K (ν, ω) is given by

K (ν, ω) = −∇ • (
ν2

)
I • ∇︸ ︷︷ ︸

I

−∇ • (
ν2∇ω − iν∇ν

)
︸ ︷︷ ︸

II

− (
ν2∇ω − iν∇ν

) • ∇︸ ︷︷ ︸
III

+ (ν∇ω − i∇ν) • I • (ν∇ω − i∇ν)︸ ︷︷ ︸
IV

(G1)
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I

−∇ • (
ν2

)
I • ∇ =

−
∑

σ,σ′∈SN

∑
1≤j≤N

∇j •
∫ 




∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

exp



i

∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)− ωk

(
zσ(2k−1), zσ(2k)

)}








∣∣zN
〉 〈

zN
∣∣ dzNI • ∇j

(G2)

II

−∇ • (
ν2∇ω − iν∇ν

)
=

−
∑

σ,σ′∈SN

∑
1≤j≤N

∇j •
∫ 


∇j





∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}


 ×

∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

−i∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)




∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)




∣∣zN
〉 〈

zN
∣∣ dzN (G3)

III

− (
ν2∇ω − iν∇ν

) • ∇ =

−
∑

σ,σ′∈SN

∑
1≤j≤N

∫ 



∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νj

(
zσ′(2k−1), zσ′(2k)

) ×

∇j





∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}




−i
∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)








∣∣zN
〉 〈

z′N
∣∣ dzN • ∇j

(G4)
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IV

(ν∇ω − i∇ν) • I • (ν∇ω − i∇ν) =

∑

σ,σ′∈SN

∑
1≤j≤N

∫ ∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)×


∇j





∑

1≤k≤N
2

{
ωk

(
zσ(2k−1), zσ(2k)

)}


− i∇j





∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)








∣∣zN
〉 〈

zN
∣∣ dzN

• I •
∑

σ,σ′∈SN

∑
1≤j≤N

∫ 



∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

) × (G5)

∇j





∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}


 −i∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)








∣∣zN
〉 〈

zN
∣∣ dzN

(G6)

leading to the expectation values

I

K (ν, ω) = 〈ϕ1 · · ·ϕN |K (ν, ω) ϕ1 · · ·ϕN〉 =

∑

σ,σ′,σ′′∈SN

∫ {
{ϕ1 (z1)

∗ · · ·∇jϕj (zj)
∗ · · ·ϕN (zN)∗} • ∇j

{
(−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)}

∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)
e

i
∑

1≤k≤N
2

{ωk(zσ′(2k−1),zσ′(2k))−ωk(zσ(2k−1),zσ(2k))}




dzN

(G7)

II

−
∑

σ,σ′,σ′′∈SN

∑
1≤j≤N

∫ {{
(−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)}

ϕ1 (z1)
∗ · · · ∇jϕj (zj)

∗ · · ·ϕN (zN)∗ •


∇j





∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}




∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

− i∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)




∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)


 dzN (G8)
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III

−
∑

σ,σ′,σ′′∈SN

∑
1≤j≤N

∫
ϕ1 (z1)

∗ · · ·ϕN (zN)∗





∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)
νk

(
zσ′(2k−1), zσ′(2k)

)

×
∑

1≤k≤N
2

∇j

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}− i
∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)×

∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)


 •∇j

{
(−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)}}
dzN

(G9)

IV

+
∑

σ,σ′,σ′′∈SN

∑
1≤j≤N

∫
ϕ1 (z1)

∗ · · ·ϕN (zN)∗ (−1)π(σ′′) ϕ1

(
zσ′′(1)

) · · ·ϕN

(
zσ′′(N)

)×




∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)∇j





∑

1≤k≤N
2

{
ωk

(
zσ(2k−1), zσ(2k)

)}




− i∇j





∏

1≤k≤N
2

νk

(
zσ(2k−1), zσ(2k)

)


 •



∇j





∑

1≤k≤N
2

{
ωk

(
zσ′(2k−1), zσ′(2k)

)}


 ×

∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

) −i∇j





∏

1≤k≤N
2

νk

(
zσ′(2k−1), zσ′(2k)

)






 dzN (G10)
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